cal the scaler by gf4 and make it better
This commit is contained in:
@@ -1,8 +1,13 @@
|
||||
import math
|
||||
import time
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from GFmatrix import GF
|
||||
|
||||
np.seterr(invalid='ignore')
|
||||
|
||||
|
||||
class Calibration:
|
||||
def __init__(self):
|
||||
@@ -47,10 +52,10 @@ class Calibration:
|
||||
def get_candidate_points(self, frame):
|
||||
candidate = np.zeros((frame.shape[0], frame.shape[1])) # 初始化图像点位置矩阵为0
|
||||
b, g, r = cv2.split(frame)
|
||||
i = 0
|
||||
while i < frame.shape[0] - 7:
|
||||
i = int(frame.shape[0] / 2)
|
||||
while i < int(7 * frame.shape[0] / 8):
|
||||
j = 0
|
||||
while j < frame.shape[1] - 7:
|
||||
while j < int(frame.shape[1] / 2):
|
||||
sum = [0, 0, 0] # 存储r,g,b三个通道的差值结果
|
||||
tempxy = [0, 0, 0, 0, 0, 0] # 存储三个通道纵向和横向的临时求和结果
|
||||
k = -6
|
||||
@@ -67,17 +72,24 @@ class Calibration:
|
||||
sum[2] = sum[2] + abs(tempxy[4] - tempxy[5]) # b通道差值
|
||||
d = max(sum[0], sum[1], sum[2]) # 选择差值最大的通道
|
||||
# print(d)
|
||||
if d > 350: # tq和zyy人工学习调参选阈值,阈值增大,候选点集中于球体中央
|
||||
if d > 1300: # tq和zyy人工学习调参选阈值,阈值增大,候选点集中于球体中央
|
||||
candidate[i][j] = -1 # -1标记为候选点
|
||||
# point_size = 1
|
||||
# point_color = (0, 0, 255)
|
||||
# thickness = 0 # 可以为 0 、4、8
|
||||
#
|
||||
# cv2.circle(frame, (j,i), point_size, point_color, thickness)
|
||||
else:
|
||||
candidate[i][j] = -3 # -3标记为非候选点
|
||||
j = j + 1
|
||||
i = i + 1
|
||||
# cv2.imshow('1', frame)
|
||||
# cv2.waitKey(0) # 按0退出
|
||||
return candidate
|
||||
|
||||
"""
|
||||
get_grid_points:
|
||||
将RGB图像根据公式Gray = 0.2989 * R + 0.5907 * G + 0.1140 * B 转为灰度图像
|
||||
将RGB图像转为灰度图像
|
||||
根据真正的角点具有严格的中心对称性,将相关系数大于选定阈值的点选做特征点
|
||||
并根据P1和P2类型点的特征(左右或上下为模式元素)将特征点分类为两类特征点
|
||||
白色背景的灰度值高于颜色元素的灰度值
|
||||
@@ -87,26 +99,32 @@ class Calibration:
|
||||
"""
|
||||
|
||||
def get_grid_points(self, frame, candidate):
|
||||
GrayImage = np.zeros((1024, 1280))
|
||||
b, g, r = cv2.split(frame)
|
||||
GrayImage = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
i = 0
|
||||
while i < frame.shape[0]:
|
||||
j = 0
|
||||
while j < frame.shape[1]:
|
||||
# 转灰度图像,提高绿色通道的比例,使得白色背景与绿色元素易于区分
|
||||
GrayImage[i][j] = 0.2989 * r[i][j] + 0.5907 * g[i][j] + 0.1140 * b[i][j]
|
||||
j = j + 1
|
||||
i = i + 1
|
||||
gridpoints = np.zeros((frame.shape[0], frame.shape[1]))
|
||||
size = 7
|
||||
counter = 0
|
||||
circle_neighborhood = np.zeros((size, size))
|
||||
for i in range(0, size):
|
||||
for j in range(0, size):
|
||||
if i < (size - 1) / 2:
|
||||
if j >= (size - 1) / 2 - i - (size - 3) / 4 and j <= (size - 1) / 2 + i + + (size - 3) / 4:
|
||||
counter += 1
|
||||
circle_neighborhood[i][j] = 1
|
||||
elif i >= (size + 5) / 4 and i <= (3 * size - 5) / 4:
|
||||
counter += 1
|
||||
circle_neighborhood[i][j] = 1
|
||||
else:
|
||||
if j >= (size - 1) / 2 - (size - 1 - i) - (size - 3) / 4 and j <= (size - 1) / 2 + (
|
||||
size - 1 - i) + (
|
||||
size - 3) / 4:
|
||||
counter += 1
|
||||
circle_neighborhood[i][j] = 1
|
||||
|
||||
gridpoints = np.zeros((1024, 1280))
|
||||
circle_neighborhood = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]]
|
||||
i = 0
|
||||
while i < frame.shape[0]:
|
||||
i = int(frame.shape[0] / 2)
|
||||
while i < int(7 * frame.shape[0] / 8):
|
||||
j = 0
|
||||
while j < frame.shape[1]:
|
||||
while j < int(frame.shape[1] / 2):
|
||||
"""
|
||||
element元素说明
|
||||
便于计算圆形邻域的相关系数,引入变量element
|
||||
@@ -140,16 +158,23 @@ class Calibration:
|
||||
q = q + 1
|
||||
p = p + 1
|
||||
|
||||
pc = (37 * element[0] - element[1] * element[2]) / (
|
||||
np.sqrt(37 * element[3] - element[1] ** 2) * np.sqrt(37 * element[4] - element[2] ** 2))
|
||||
if pc > 0.1: # 相关系数足够大的点被判断为特征点(对称系数为0的为特征点——A Twofold...)
|
||||
pc = (counter * element[0] - element[1] * element[2]) / (
|
||||
np.sqrt(counter * element[3] - element[1] ** 2) * np.sqrt(
|
||||
counter * element[4] - element[2] ** 2))
|
||||
if pc > 0.5: # 相关系数足够大的点被判断为特征点(对称系数为0的为特征点——A Twofold...)
|
||||
gridpoints[i][j] = 1
|
||||
# point_size = 1
|
||||
# point_color = (0, 0, 255)
|
||||
# thickness = 0 # 可以为 0 、4、8
|
||||
#
|
||||
# cv2.circle(frame, (j, i), point_size, point_color, thickness)
|
||||
|
||||
else:
|
||||
gridpoints[i][j] = 0
|
||||
j = j + 1
|
||||
i = i + 1
|
||||
|
||||
# cv2.imshow('2', frame)
|
||||
# cv2.waitKey(0) # 按0退出
|
||||
return gridpoints
|
||||
|
||||
"""
|
||||
@@ -197,10 +222,10 @@ class Calibration:
|
||||
|
||||
def get_feature_point(self, frame, gps):
|
||||
q = []
|
||||
i = 0
|
||||
while i < frame.shape[0]:
|
||||
i = int(frame.shape[0] / 2)
|
||||
while i < int(7 * frame.shape[0] / 8):
|
||||
j = 0
|
||||
while j < frame.shape[1]:
|
||||
while j < int(frame.shape[1] / 2):
|
||||
if self.flag[i][j] == 1 or gps[i][j] == 0:
|
||||
j = j + 1
|
||||
continue
|
||||
@@ -210,6 +235,89 @@ class Calibration:
|
||||
i = i + 1
|
||||
return q
|
||||
|
||||
"""
|
||||
decode:
|
||||
根据颜色解码
|
||||
确定特征点在矩阵的位置
|
||||
"""
|
||||
|
||||
def decode(self, frame, feature_point):
|
||||
points = []
|
||||
position = []
|
||||
|
||||
color_map = np.zeros((frame.shape[0], frame.shape[1]))
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)
|
||||
l, a, b = cv2.split(frame)
|
||||
for i in range(0, frame.shape[0]):
|
||||
for j in range(0, frame.shape[1]):
|
||||
if l[i][j] < 50:
|
||||
color_map[i][j] = 3
|
||||
frame[i][j] = np.array([0, 0, 0])
|
||||
elif l[i][j] > 140:
|
||||
frame[i][j] = np.array([255, 255, 255])
|
||||
color_map[i][j] = 255
|
||||
else:
|
||||
if b[i][j] < 125:
|
||||
color_map[i][j] = 0
|
||||
frame[i][j] = np.array([255, 0, 0])
|
||||
else:
|
||||
if a[i][j] > 125:
|
||||
color_map[i][j] = 1
|
||||
frame[i][j] = np.array([0, 0, 255])
|
||||
else:
|
||||
color_map[i][j] = 2
|
||||
frame[i][j] = np.array([0, 255, 0])
|
||||
|
||||
# cv2.imshow('lab', frame)
|
||||
# cv2.waitKey(0) # 按0退出
|
||||
data = GF(1, 1, 1, 1, 1, 1)
|
||||
# map = np.zeros((4, 4, 4, 4, 4, 4, 2))
|
||||
|
||||
map = np.zeros((4096, 2))
|
||||
|
||||
i = 0
|
||||
while i < 64:
|
||||
j = 1
|
||||
while j < 62:
|
||||
index = data[i][j - 1] * 4 ** 5 + data[i][j] * 4 ** 4 + data[i][j + 1] * 4 ** 3 + data[i + 1][
|
||||
j - 1] * 4 ** 2 + data[i + 1][j] * 4 + data[i + 1][j + 1]
|
||||
map[index] = [i, j]
|
||||
j = j + 1
|
||||
i = i + 1
|
||||
|
||||
for point in feature_point:
|
||||
if color_map[int(point[0])][int(point[1]) + 9] != 255 and color_map[int(point[0])][
|
||||
int(point[1]) - 9] != 255:
|
||||
pass
|
||||
else:
|
||||
i = int(point[0])
|
||||
j = int(point[1])
|
||||
index = int(color_map[i - 9][j - 18]) * 4 ** 5 + int(color_map[i - 9][j]) * 4 ** 4 + int(
|
||||
color_map[i - 9][j + 18]) * 4 ** 3 + int(color_map[i + 9][j - 18]) * 4 ** 2 + int(
|
||||
color_map[i + 9][j]) * 4 + int(color_map[i + 9][j + 18])
|
||||
# point_size = 1
|
||||
# point_color = (255, 255, 255)
|
||||
# thickness = 0 # 可以为 0 、4、8
|
||||
# print(color_map[i - 9][j - 18], color_map[i - 9][j], color_map[i - 9][j + 18], color_map[i + 9][j - 18],
|
||||
# color_map[i + 9][j], color_map[i + 9][j + 18])
|
||||
# print(index)
|
||||
#
|
||||
# cv2.circle(frame, (int(j - 18), int(i - 9)), point_size, point_color, thickness)
|
||||
# cv2.circle(frame, (int(j), int(i - 9)), point_size, point_color, thickness)
|
||||
# cv2.circle(frame, (int(j + 18), int(i - 9)), point_size, point_color, thickness)
|
||||
# cv2.circle(frame, (int(j - 18), int(i + 9)), point_size, point_color, thickness)
|
||||
# cv2.circle(frame, (int(j), int(i + 9)), point_size, point_color, thickness)
|
||||
# cv2.circle(frame, (int(j + 18), int(i + 9)), point_size, point_color, thickness)
|
||||
try:
|
||||
if map[index][0] < 10 and map[index][1] < 8:
|
||||
points.append(list(map[int(index)]))
|
||||
position.append([i, j])
|
||||
except:
|
||||
pass
|
||||
cv2.imshow('lab', frame)
|
||||
cv2.waitKey(0) # 按0退出
|
||||
return points, position
|
||||
|
||||
def process(self, stream):
|
||||
while stream.isOpened():
|
||||
flag, img_rd = stream.read() # Get camera video stream
|
||||
@@ -224,8 +332,9 @@ class Calibration:
|
||||
stream.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
cv2.imwrite('testt.png',img_rd)
|
||||
cv2.imwrite('testt.png', img_rd)
|
||||
|
||||
# img_rd = cv2.resize(img_rd, (img_rd.shape[0]//2, img_rd.shape[1]//2))
|
||||
# 1024*1280 -1候选点,-3非候选点
|
||||
candidate = self.get_candidate_points(frame=img_rd)
|
||||
# 1024*1280 1角点,0非角点
|
||||
@@ -234,20 +343,52 @@ class Calibration:
|
||||
featurepoints_position = self.get_feature_point(frame=img_rd, gps=gridpoints)
|
||||
# print(featurepoints_position)
|
||||
|
||||
# featurepoints_position = np.array(featurepoints_position)
|
||||
# featurepoints_position = featurepoints_position[np.lexsort(featurepoints_position[:, :-1].T)]
|
||||
feature_points, position = self.decode(frame=img_rd, feature_point=featurepoints_position)
|
||||
|
||||
# feature_points = np.array(feature_points)
|
||||
# feature_points = feature_points[np.lexsort(feature_points[:, :-1].T)]
|
||||
# print(feature_points)
|
||||
|
||||
# print(featurepoints_position)
|
||||
|
||||
# distance = []
|
||||
# for i in range(0, len(featurepoints_position) - 1):
|
||||
# distance.append(
|
||||
# math.sqrt((featurepoints_position[i + 1][0] - featurepoints_position[i][0]) ** 2 +
|
||||
# (featurepoints_position[i + 1][1] - featurepoints_position[i][1]) ** 2))
|
||||
# print(distance)
|
||||
# distance = sorted(distance)
|
||||
|
||||
index = len(feature_points) // 2
|
||||
pixel_distance = math.sqrt((position[index + 1][0] - position[index][0]) ** 2 +
|
||||
(position[index + 1][1] - position[index][1]) ** 2)
|
||||
world_distance = math.sqrt((feature_points[index + 1][0] * 2 - feature_points[index][0] * 2) ** 2 +
|
||||
(feature_points[index + 1][1] * 2 - feature_points[index][1] * 2) ** 2)
|
||||
|
||||
scale = world_distance / pixel_distance
|
||||
|
||||
# print(distance)
|
||||
# for i in range(index - 1, index + 2):
|
||||
# print(distance[i])
|
||||
# 绘制特征点
|
||||
point_size = 1
|
||||
point_color = (0, 0, 255)
|
||||
thickness = 0 # 可以为 0 、4、8
|
||||
|
||||
for point in featurepoints_position:
|
||||
cv2.circle(img_rd, (int(point[1]), int(point[0])), point_size, point_color, thickness)
|
||||
cv2.namedWindow("image")
|
||||
cv2.imshow('image', img_rd)
|
||||
cv2.waitKey(0) # 按0退出
|
||||
# point_size = 1
|
||||
# point_color = (0, 0, 255)
|
||||
# thickness = 0 # 可以为 0 、4、8
|
||||
|
||||
# for i in range(0, len(featurepoints_position)):
|
||||
# cv2.circle(img_rd, (int(featurepoints_position[i][1]), int(featurepoints_position[i][0])),
|
||||
# point_size, point_color, thickness)
|
||||
# for point in featurepoints_position:
|
||||
# cv2.circle(img_rd, (int(point[1]), int(point[0])), point_size, point_color, thickness)
|
||||
# cv2.namedWindow("image")
|
||||
# cv2.imshow('image', img_rd)
|
||||
# cv2.waitKey(0) # 按0退出
|
||||
return scale
|
||||
self.draw_note(img_rd)
|
||||
self.update_fps()
|
||||
cv2.imshow("camera", img_rd)
|
||||
cv2.imshow("image", img_rd)
|
||||
|
||||
def run(self):
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
BIN
Data/gridpoints.jpg
Normal file
BIN
Data/gridpoints.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 26 KiB |
Reference in New Issue
Block a user