calibrate by gf4

This commit is contained in:
Tang1705
2020-07-06 17:07:02 +08:00
parent 1a089c878b
commit 867cfa0036
4 changed files with 420 additions and 0 deletions

View File

@@ -0,0 +1,266 @@
import time
import cv2
import numpy as np
class Calibration:
def __init__(self):
self.path_photos_from_camera = "data/data_for_calibration/"
self.font = cv2.FONT_ITALIC
self.flag = np.zeros((1024, 1280))
self.nx = [-1, -1, -1, 0, 0, 1, 1, 1]
self.ny = [1, 0, -1, 1, -1, 1, 0, -1]
self.frame_time = 0
self.frame_start_time = 0
self.fps = 0
# 获取处理之后 stream 的帧数
def update_fps(self):
now = time.time()
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
# 生成的 cv2 window 上面添加说明文字
def draw_note(self, img_rd):
# 添加说明
cv2.putText(img_rd, "Calibration", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "S: Calibrate Current Frame", (20, 400), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
"""
get_candidate_points:
将RGB图像转为单通道
计算每一个像素点横向和纵向的单通道色彩强度差,选择值最大的通道为该像素点的差值,将差值大于选定阈值的点视为候选点
在选定的窗口大小中进行计算,减少处理数据的数量
返回存有候选点数据的矩阵
-1为候选点
-3为非候选点
"""
def get_candidate_points(self, frame):
candidate = np.zeros((frame.shape[0], frame.shape[1])) # 初始化图像点位置矩阵为0
b, g, r = cv2.split(frame)
i = 0
while i < frame.shape[0] - 7:
j = 0
while j < frame.shape[1] - 7:
sum = [0, 0, 0] # 存储r,g,b三个通道的差值结果
tempxy = [0, 0, 0, 0, 0, 0] # 存储三个通道纵向和横向的临时求和结果
k = -6
while k < 7: # 十字掩码长度选择为菱形对角线长度的一半
tempxy[0] = tempxy[0] + b[i + k][j] # b通道水平方向
tempxy[1] = tempxy[1] + b[i][j + k] # b通道铅直方向
tempxy[2] = tempxy[2] + g[i + k][j] # g通道水平方向
tempxy[3] = tempxy[3] + g[i][j + k] # g通道铅直方向
tempxy[4] = tempxy[4] + r[i + k][j] # r通道水平方向
tempxy[5] = tempxy[5] + r[i][j + k] # r通道铅直方向
k = k + 1
sum[0] = sum[0] + abs(tempxy[0] - tempxy[1]) # r通道差值
sum[1] = sum[1] + abs(tempxy[2] - tempxy[3]) # g通道差值
sum[2] = sum[2] + abs(tempxy[4] - tempxy[5]) # b通道差值
d = max(sum[0], sum[1], sum[2]) # 选择差值最大的通道
# print(d)
if d > 350: # tq和zyy人工学习调参选阈值阈值增大候选点集中于球体中央
candidate[i][j] = -1 # -1标记为候选点
else:
candidate[i][j] = -3 # -3标记为非候选点
j = j + 1
i = i + 1
return candidate
"""
get_grid_points:
将RGB图像根据公式Gray = 0.2989 * R + 0.5907 * G + 0.1140 * B 转为灰度图像
根据真正的角点具有严格的中心对称性,将相关系数大于选定阈值的点选做特征点
并根据P1和P2类型点的特征左右或上下为模式元素将特征点分类为两类特征点
白色背景的灰度值高于颜色元素的灰度值
圆邻域采用SUSAN角点检测法的圆邻域直径为7
1为角点
2为非角点
"""
def get_grid_points(self, frame, candidate):
GrayImage = np.zeros((1024, 1280))
b, g, r = cv2.split(frame)
i = 0
while i < frame.shape[0]:
j = 0
while j < frame.shape[1]:
# 转灰度图像,提高绿色通道的比例,使得白色背景与绿色元素易于区分
GrayImage[i][j] = 0.2989 * r[i][j] + 0.5907 * g[i][j] + 0.1140 * b[i][j]
j = j + 1
i = i + 1
gridpoints = np.zeros((1024, 1280))
circle_neighborhood = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]]
i = 0
while i < frame.shape[0]:
j = 0
while j < frame.shape[1]:
"""
element元素说明
便于计算圆形邻域的相关系数引入变量element
第一个元素M_{Ci} * M_{Ci}'之和
第二个元素M_{Ci}之和
第三个元素M_{Ci}'之和
第四个元素M_{Ci}^2之和
第五个元素:(M_{Ci}')^2之和
"""
element = [0, 0, 0, 0, 0]
if candidate[i][j] == -1:
# 计算直径为7的圆邻域的色彩强度与数据结构中数组和矩阵的关系相似
p = -3
while p < 4:
q = -3
while q < 4:
if circle_neighborhood[p][q] == 1:
# 以圆心像素点为0,0
# 计算其余点的坐标和旋转180度后的坐标
# 原坐标
imgx = i + p
imgy = j + q
# 旋转180度后的坐标
imgxp = i - p
imgyp = j - q
element[0] = element[0] + int(GrayImage[imgx][imgy]) * int(GrayImage[imgxp][imgyp])
element[1] = element[1] + int(GrayImage[imgx][imgy])
element[2] = element[2] + int(GrayImage[imgxp][imgyp])
element[3] = element[3] + int(GrayImage[imgx][imgy] ** 2)
element[4] = element[4] + int(GrayImage[imgxp][imgyp] ** 2)
q = q + 1
p = p + 1
pc = (37 * element[0] - element[1] * element[2]) / (
np.sqrt(37 * element[3] - element[1] ** 2) * np.sqrt(37 * element[4] - element[2] ** 2))
if pc > 0.1: # 相关系数足够大的点被判断为特征点(对称系数为0的为特征点——A Twofold...)
gridpoints[i][j] = 1
else:
gridpoints[i][j] = 0
j = j + 1
i = i + 1
return gridpoints
"""
bfs8:
8邻域广度优先搜索
确定唯一特征点位置
"""
def bfs8(self, frame, g, x, y):
counter = 1
queue = [[x, y]]
ans = [0, 0]
self.flag[x][y] = 1
ans[0] = 1.0 * x
ans[1] = 1.0 * y
while len(queue) > 0:
current = queue.pop(0)
self.flag[current[0]][current[1]] = 1
i = 0
while i < 8:
temp = [0, 0]
temp[0] = current[0] + self.nx[i]
temp[1] = current[1] + self.ny[i]
if temp[0] < 0 or temp[0] > frame.shape[0] or temp[1] < 0 or temp[1] > frame.shape[1]:
i = i + 1
continue
if self.flag[int(temp[0])][int(temp[1])] or g[int(temp[0])][int(temp[1])] == 0:
i = i + 1
continue
self.flag[int(temp[0])][int(temp[1])] = 1
queue.append(temp)
ans[0] = ans[0] + 1.0 * temp[0]
ans[1] = ans[1] + 1.0 * temp[1]
counter = counter + 1
i = i + 1
ans[0] = ans[0] / counter
ans[1] = ans[1] / counter
return ans
"""
get_feature_point:
调用8邻域深度优先搜索
确定单一特征点位置
"""
def get_feature_point(self, frame, gps):
q = []
i = 0
while i < frame.shape[0]:
j = 0
while j < frame.shape[1]:
if self.flag[i][j] == 1 or gps[i][j] == 0:
j = j + 1
continue
temp = self.bfs8(frame, gps, i, j)
q.append(temp)
j = j + 1
i = i + 1
return q
def process(self, stream):
while stream.isOpened():
flag, img_rd = stream.read() # Get camera video stream
self.flag = np.zeros((img_rd.shape[0], img_rd.shape[1]))
kk = cv2.waitKey(1)
if kk == ord('q'):
break
else:
if kk == ord('s'):
stream.release()
cv2.destroyAllWindows()
cv2.imwrite('testt.png',img_rd)
# 1024*1280 -1候选点-3非候选点
candidate = self.get_candidate_points(frame=img_rd)
# 1024*1280 1角点0非角点
gridpoints = self.get_grid_points(frame=img_rd, candidate=candidate)
# 存有特征点的列表 -1特征点
featurepoints_position = self.get_feature_point(frame=img_rd, gps=gridpoints)
# print(featurepoints_position)
# 绘制特征点
point_size = 1
point_color = (0, 0, 255)
thickness = 0 # 可以为 0 、4、8
for point in featurepoints_position:
cv2.circle(img_rd, (int(point[1]), int(point[0])), point_size, point_color, thickness)
cv2.namedWindow("image")
cv2.imshow('image', img_rd)
cv2.waitKey(0) # 按0退出
self.draw_note(img_rd)
self.update_fps()
cv2.imshow("camera", img_rd)
def run(self):
cap = cv2.VideoCapture(0)
self.process(cap)
cap.release()
cv2.destroyAllWindows()
def main():
Calibration_on = Calibration()
Calibration_on.run()
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,60 @@
# plus、multi、GF三个函数用于生成伪随机矩阵
def plus(x, y):
if x == y:
return 0
elif (x == 1 and y == 2) or (x == 2 and y == 1):
return 3
elif (x == 1 and y == 3) or (x == 3 and y == 1):
return 2
elif (x == 2 and y == 3) or (x == 3 and y == 2):
return 1
elif x == 0:
return y
elif y == 0:
return x
def multi(x, y):
if x == 0 or y == 0:
return 0
elif x == 1:
return y
elif y == 1:
return x
elif x == 2 and y == 2:
return 3
elif x == 3 and y == 3:
return 2
else:
return 1
def GF(a, b, c, d, e, f):
data = []
for i in range(0, 4095):
data.append(0)
data[0] = a
data[1] = b
data[2] = c
data[3] = d
data[4] = e
data[5] = f
for i in range(6, 4095):
data[i] = plus(data[i - 1], multi(data[i - 2], 3))
data[i] = plus(data[i], multi(data[i - 3], 2))
data[i] = plus(data[i], multi(data[i - 4], 1))
data[i] = plus(data[i], multi(data[i - 5], 1))
data[i] = plus(data[i], multi(data[i - 6], 3))
res = []
for i in range(0, 65):
res.append([])
for j in range(0, 63):
res[i].append(0)
for i in range(0, 4095):
res[i % 65][i % 63] = data[i]
return res

View File

@@ -0,0 +1,94 @@
import cv2
import numpy as np
from PIL import Image
from GFmatrix import GF
# 生成一个菱形的填色像素坐标
def set_matrix(dimension):
color = []
for i in range(0, dimension):
color.append([])
for j in range(0, dimension):
color[i].append(0)
demission_temp = dimension - 1
for i in range(0, dimension):
for j in range(0, dimension):
if i < demission_temp // 2:
if j >= demission_temp // 2 - i and j <= demission_temp // 2 + i or j == demission_temp // 2:
color[i][j] = 1
elif i > demission_temp // 2:
temp = (demission_temp) - i
if j >= demission_temp // 2 - temp and j <= demission_temp // 2 + temp or j == demission_temp // 2:
color[i][j] = 1
else:
color[i][j] = 1
return color
if __name__ == '__main__':
# data = fileload()
data = GF(1, 1, 1, 1, 1, 1)
dimension = int(input("Please enter the length of the diagonal of the rhombus:"))
color = set_matrix(dimension)
x = 912
y = 1140
bgcolor = 0xffffff # 投影图案是白色背景
c = Image.new("RGB", (x, y), bgcolor)
start_row = end_row = 0
start_column = end_column = 0
if 63 * dimension > 912:
start_row = 0
end_row = 912
else:
start_row = (912 - (63 * dimension)) // 2
end_row = start_row + 63 * dimension
if 65 * dimension > 1140:
start_column = 0
end_column = 1140
else:
start_column = (1140 - (65 * dimension)) // 2
end_column = start_column + 65 * dimension
# 以13*13的菱形为例暂时没有修改菱形超过图片大小的情况
i = start_row
while i < end_row:
if i > end_row - dimension or i == end_row - dimension:
break
else:
t = (i - start_row) // dimension
j = start_column
while j < end_column:
if j > end_column - dimension or j == end_column - dimension:
break
else:
q = (j - start_column) // dimension
if data[q][t] == 0:
for k in range(0, dimension):
for m in range(0, dimension):
if color[k][m] == 1:
c.putpixel([i + k, j + m], (0, 0, 255)) # 蓝色
elif data[q][t] == 1:
for k in range(0, dimension):
for m in range(0, dimension):
if color[k][m] == 1:
c.putpixel([i + k, j + m], (255, 0, 0)) # 红色
elif data[q][t] == 2:
for k in range(0, dimension):
for m in range(0, dimension):
if color[k][m] == 1:
c.putpixel([i + k, j + m], (0, 255, 0)) # 绿色
else:
for k in range(0, dimension):
for m in range(0, dimension):
if color[k][m] == 1:
c.putpixel([i + k, j + m], (0, 0, 0))
j = j + dimension
i = i + dimension
c.show()
c.save("projector.png")

BIN
Data/projector.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB