267 lines
10 KiB
Python
267 lines
10 KiB
Python
import time
|
||
|
||
import cv2
|
||
import numpy as np
|
||
|
||
|
||
class Calibration:
|
||
def __init__(self):
|
||
self.path_photos_from_camera = "data/data_for_calibration/"
|
||
self.font = cv2.FONT_ITALIC
|
||
|
||
self.flag = np.zeros((1024, 1280))
|
||
self.nx = [-1, -1, -1, 0, 0, 1, 1, 1]
|
||
self.ny = [1, 0, -1, 1, -1, 1, 0, -1]
|
||
|
||
self.frame_time = 0
|
||
self.frame_start_time = 0
|
||
self.fps = 0
|
||
|
||
# 获取处理之后 stream 的帧数
|
||
def update_fps(self):
|
||
now = time.time()
|
||
self.frame_time = now - self.frame_start_time
|
||
self.fps = 1.0 / self.frame_time
|
||
self.frame_start_time = now
|
||
|
||
# 生成的 cv2 window 上面添加说明文字
|
||
def draw_note(self, img_rd):
|
||
# 添加说明
|
||
cv2.putText(img_rd, "Calibration", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
|
||
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
|
||
cv2.LINE_AA)
|
||
|
||
cv2.putText(img_rd, "S: Calibrate Current Frame", (20, 400), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
|
||
cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
|
||
|
||
"""
|
||
get_candidate_points:
|
||
将RGB图像转为单通道
|
||
计算每一个像素点横向和纵向的单通道色彩强度差,选择值最大的通道为该像素点的差值,将差值大于选定阈值的点视为候选点
|
||
在选定的窗口大小中进行计算,减少处理数据的数量
|
||
返回存有候选点数据的矩阵
|
||
-1为候选点
|
||
-3为非候选点
|
||
"""
|
||
|
||
def get_candidate_points(self, frame):
|
||
candidate = np.zeros((frame.shape[0], frame.shape[1])) # 初始化图像点位置矩阵为0
|
||
b, g, r = cv2.split(frame)
|
||
i = 0
|
||
while i < frame.shape[0] - 7:
|
||
j = 0
|
||
while j < frame.shape[1] - 7:
|
||
sum = [0, 0, 0] # 存储r,g,b三个通道的差值结果
|
||
tempxy = [0, 0, 0, 0, 0, 0] # 存储三个通道纵向和横向的临时求和结果
|
||
k = -6
|
||
while k < 7: # 十字掩码长度选择为菱形对角线长度的一半
|
||
tempxy[0] = tempxy[0] + b[i + k][j] # b通道水平方向
|
||
tempxy[1] = tempxy[1] + b[i][j + k] # b通道铅直方向
|
||
tempxy[2] = tempxy[2] + g[i + k][j] # g通道水平方向
|
||
tempxy[3] = tempxy[3] + g[i][j + k] # g通道铅直方向
|
||
tempxy[4] = tempxy[4] + r[i + k][j] # r通道水平方向
|
||
tempxy[5] = tempxy[5] + r[i][j + k] # r通道铅直方向
|
||
k = k + 1
|
||
sum[0] = sum[0] + abs(tempxy[0] - tempxy[1]) # r通道差值
|
||
sum[1] = sum[1] + abs(tempxy[2] - tempxy[3]) # g通道差值
|
||
sum[2] = sum[2] + abs(tempxy[4] - tempxy[5]) # b通道差值
|
||
d = max(sum[0], sum[1], sum[2]) # 选择差值最大的通道
|
||
# print(d)
|
||
if d > 350: # tq和zyy人工学习调参选阈值,阈值增大,候选点集中于球体中央
|
||
candidate[i][j] = -1 # -1标记为候选点
|
||
else:
|
||
candidate[i][j] = -3 # -3标记为非候选点
|
||
j = j + 1
|
||
i = i + 1
|
||
return candidate
|
||
|
||
"""
|
||
get_grid_points:
|
||
将RGB图像根据公式Gray = 0.2989 * R + 0.5907 * G + 0.1140 * B 转为灰度图像
|
||
根据真正的角点具有严格的中心对称性,将相关系数大于选定阈值的点选做特征点
|
||
并根据P1和P2类型点的特征(左右或上下为模式元素)将特征点分类为两类特征点
|
||
白色背景的灰度值高于颜色元素的灰度值
|
||
圆邻域采用SUSAN角点检测法的圆邻域,直径为7
|
||
1为角点
|
||
2为非角点
|
||
"""
|
||
|
||
def get_grid_points(self, frame, candidate):
|
||
GrayImage = np.zeros((1024, 1280))
|
||
b, g, r = cv2.split(frame)
|
||
|
||
i = 0
|
||
while i < frame.shape[0]:
|
||
j = 0
|
||
while j < frame.shape[1]:
|
||
# 转灰度图像,提高绿色通道的比例,使得白色背景与绿色元素易于区分
|
||
GrayImage[i][j] = 0.2989 * r[i][j] + 0.5907 * g[i][j] + 0.1140 * b[i][j]
|
||
j = j + 1
|
||
i = i + 1
|
||
|
||
gridpoints = np.zeros((1024, 1280))
|
||
circle_neighborhood = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1],
|
||
[1, 1, 1, 1, 1, 1, 1],
|
||
[1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]]
|
||
i = 0
|
||
while i < frame.shape[0]:
|
||
j = 0
|
||
while j < frame.shape[1]:
|
||
"""
|
||
element元素说明
|
||
便于计算圆形邻域的相关系数,引入变量element
|
||
第一个元素:M_{Ci} * M_{Ci}'之和
|
||
第二个元素:M_{Ci}之和
|
||
第三个元素:M_{Ci}'之和
|
||
第四个元素:M_{Ci}^2之和
|
||
第五个元素:(M_{Ci}')^2之和
|
||
"""
|
||
element = [0, 0, 0, 0, 0]
|
||
if candidate[i][j] == -1:
|
||
# 计算直径为7的圆邻域的色彩强度,与数据结构中数组和矩阵的关系相似
|
||
p = -3
|
||
while p < 4:
|
||
q = -3
|
||
while q < 4:
|
||
if circle_neighborhood[p][q] == 1:
|
||
# 以圆心像素点为(0,0)
|
||
# 计算其余点的坐标和旋转180度后的坐标
|
||
# 原坐标
|
||
imgx = i + p
|
||
imgy = j + q
|
||
# 旋转180度后的坐标
|
||
imgxp = i - p
|
||
imgyp = j - q
|
||
element[0] = element[0] + int(GrayImage[imgx][imgy]) * int(GrayImage[imgxp][imgyp])
|
||
element[1] = element[1] + int(GrayImage[imgx][imgy])
|
||
element[2] = element[2] + int(GrayImage[imgxp][imgyp])
|
||
element[3] = element[3] + int(GrayImage[imgx][imgy] ** 2)
|
||
element[4] = element[4] + int(GrayImage[imgxp][imgyp] ** 2)
|
||
q = q + 1
|
||
p = p + 1
|
||
|
||
pc = (37 * element[0] - element[1] * element[2]) / (
|
||
np.sqrt(37 * element[3] - element[1] ** 2) * np.sqrt(37 * element[4] - element[2] ** 2))
|
||
if pc > 0.1: # 相关系数足够大的点被判断为特征点(对称系数为0的为特征点——A Twofold...)
|
||
gridpoints[i][j] = 1
|
||
|
||
else:
|
||
gridpoints[i][j] = 0
|
||
j = j + 1
|
||
i = i + 1
|
||
|
||
return gridpoints
|
||
|
||
"""
|
||
bfs8:
|
||
8邻域广度优先搜索
|
||
确定唯一特征点位置
|
||
"""
|
||
|
||
def bfs8(self, frame, g, x, y):
|
||
counter = 1
|
||
queue = [[x, y]]
|
||
ans = [0, 0]
|
||
self.flag[x][y] = 1
|
||
ans[0] = 1.0 * x
|
||
ans[1] = 1.0 * y
|
||
while len(queue) > 0:
|
||
current = queue.pop(0)
|
||
self.flag[current[0]][current[1]] = 1
|
||
i = 0
|
||
while i < 8:
|
||
temp = [0, 0]
|
||
temp[0] = current[0] + self.nx[i]
|
||
temp[1] = current[1] + self.ny[i]
|
||
if temp[0] < 0 or temp[0] > frame.shape[0] or temp[1] < 0 or temp[1] > frame.shape[1]:
|
||
i = i + 1
|
||
continue
|
||
if self.flag[int(temp[0])][int(temp[1])] or g[int(temp[0])][int(temp[1])] == 0:
|
||
i = i + 1
|
||
continue
|
||
self.flag[int(temp[0])][int(temp[1])] = 1
|
||
queue.append(temp)
|
||
ans[0] = ans[0] + 1.0 * temp[0]
|
||
ans[1] = ans[1] + 1.0 * temp[1]
|
||
counter = counter + 1
|
||
i = i + 1
|
||
ans[0] = ans[0] / counter
|
||
ans[1] = ans[1] / counter
|
||
return ans
|
||
|
||
"""
|
||
get_feature_point:
|
||
调用8邻域深度优先搜索
|
||
确定单一特征点位置
|
||
"""
|
||
|
||
def get_feature_point(self, frame, gps):
|
||
q = []
|
||
i = 0
|
||
while i < frame.shape[0]:
|
||
j = 0
|
||
while j < frame.shape[1]:
|
||
if self.flag[i][j] == 1 or gps[i][j] == 0:
|
||
j = j + 1
|
||
continue
|
||
temp = self.bfs8(frame, gps, i, j)
|
||
q.append(temp)
|
||
j = j + 1
|
||
i = i + 1
|
||
return q
|
||
|
||
def process(self, stream):
|
||
while stream.isOpened():
|
||
flag, img_rd = stream.read() # Get camera video stream
|
||
self.flag = np.zeros((img_rd.shape[0], img_rd.shape[1]))
|
||
|
||
kk = cv2.waitKey(1)
|
||
|
||
if kk == ord('q'):
|
||
break
|
||
else:
|
||
if kk == ord('s'):
|
||
stream.release()
|
||
cv2.destroyAllWindows()
|
||
|
||
cv2.imwrite('testt.png',img_rd)
|
||
|
||
# 1024*1280 -1候选点,-3非候选点
|
||
candidate = self.get_candidate_points(frame=img_rd)
|
||
# 1024*1280 1角点,0非角点
|
||
gridpoints = self.get_grid_points(frame=img_rd, candidate=candidate)
|
||
# 存有特征点的列表 -1特征点
|
||
featurepoints_position = self.get_feature_point(frame=img_rd, gps=gridpoints)
|
||
# print(featurepoints_position)
|
||
|
||
# 绘制特征点
|
||
point_size = 1
|
||
point_color = (0, 0, 255)
|
||
thickness = 0 # 可以为 0 、4、8
|
||
|
||
for point in featurepoints_position:
|
||
cv2.circle(img_rd, (int(point[1]), int(point[0])), point_size, point_color, thickness)
|
||
cv2.namedWindow("image")
|
||
cv2.imshow('image', img_rd)
|
||
cv2.waitKey(0) # 按0退出
|
||
|
||
self.draw_note(img_rd)
|
||
self.update_fps()
|
||
cv2.imshow("camera", img_rd)
|
||
|
||
def run(self):
|
||
cap = cv2.VideoCapture(0)
|
||
self.process(cap)
|
||
|
||
cap.release()
|
||
cv2.destroyAllWindows()
|
||
|
||
|
||
def main():
|
||
Calibration_on = Calibration()
|
||
Calibration_on.run()
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|