feat: add doubao-2.0-code model and update README

This commit is contained in:
zhayujie
2026-02-14 16:49:44 +08:00
parent 48db538a2e
commit ab28ee58ab
9 changed files with 643 additions and 30 deletions

View File

@@ -18,7 +18,7 @@
-**长期记忆:** 自动将对话记忆持久化至本地文件和数据库中,包括全局记忆和天级记忆,支持关键词及向量检索
-**技能系统:** 实现了Skills创建和运行的引擎内置多种技能并支持通过自然语言对话完成自定义Skills开发
-**多模态消息:** 支持对文本、图片、语音、文件等多类型消息进行解析、处理、生成、发送等操作
-**多模型接入:** 支持OpenAI, Claude, Gemini, DeepSeek, MiniMax、GLM、Qwen、Kimi等国内外主流模型厂商
-**多模型接入:** 支持OpenAI, Claude, Gemini, DeepSeek, MiniMax、GLM、Qwen、Kimi、Doubao等国内外主流模型厂商
-**多端部署:** 支持运行在本地计算机或服务器,可集成到网页、飞书、钉钉、微信公众号、企业微信应用中使用
-**知识库:** 集成企业知识库能力让Agent成为专属数字员工基于[LinkAI](https://link-ai.tech)平台实现
@@ -90,7 +90,7 @@ bash <(curl -sS https://cdn.link-ai.tech/code/cow/run.sh)
项目支持国内外主流厂商的模型接口,可选模型及配置说明参考:[模型说明](#模型说明)。
> Agent模式下推荐使用以下模型可根据效果及成本综合选择GLM(glm-4.7)、MiniMAx(MiniMax-M2.1)、Qwen(qwen3-max)、Claude(claude-opus-4-6、claude-sonnet-4-5、claude-sonnet-4-0)、Gemini(gemini-3-flash-preview、gemini-3-pro-preview)
> Agent模式下推荐使用以下模型可根据效果及成本综合选择MiniMax(MiniMax-M2.5)、GLM(glm-5)、Kimi(kimi-k2.5)、Qwen(qwen3-max)、Claude(claude-sonnet-4-5)、Gemini(gemini-3-flash-preview)
同时支持使用 **LinkAI平台** 接口,可灵活切换 OpenAI、Claude、Gemini、DeepSeek、Qwen、Kimi 等多种常用模型并支持知识库、工作流、插件等Agent能力参考 [接口文档](https://docs.link-ai.tech/platform/api)。
@@ -136,9 +136,11 @@ pip3 install -r requirements-optional.txt
# config.json 文件内容示例
{
"channel_type": "web", # 接入渠道类型默认为web支持修改为:feishu,dingtalk,wechatcom_app,terminal,wechatmp,wechatmp_service
"model": "MiniMax-M2.1", # 模型名称
"model": "MiniMax-M2.5", # 模型名称
"minimax_api_key": "", # MiniMax API Key
"zhipu_ai_api_key": "", # 智谱GLM API Key
"moonshot_api_key": "", # Kimi/Moonshot API Key
"ark_api_key": "", # 豆包(火山方舟) API Key
"dashscope_api_key": "", # 百炼(通义千问)API Key
"claude_api_key": "", # Claude API Key
"claude_api_base": "https://api.anthropic.com/v1", # Claude API 地址,修改可接入三方代理平台
@@ -173,7 +175,7 @@ pip3 install -r requirements-optional.txt
<details>
<summary>2. 其他配置</summary>
+ `model`: 模型名称Agent模式下推荐使用 `glm-4.7``MiniMax-M2.1``qwen3-max``claude-opus-4-6``claude-sonnet-4-5``claude-sonnet-4-0``gemini-3-flash-preview``gemini-3-pro-preview`,全部模型名称参考[common/const.py](https://github.com/zhayujie/chatgpt-on-wechat/blob/master/common/const.py)文件
+ `model`: 模型名称Agent模式下推荐使用 `MiniMax-M2.5``glm-5``kimi-k2.5``qwen3-max``claude-sonnet-4-5``gemini-3-flash-preview`,全部模型名称参考[common/const.py](https://github.com/zhayujie/chatgpt-on-wechat/blob/master/common/const.py)文件
+ `character_desc`普通对话模式下的机器人系统提示词。在Agent模式下该配置不生效由工作空间中的文件内容构成。
+ `subscribe_msg`订阅消息公众号和企业微信channel中请填写当被订阅时会自动回复 可使用特殊占位符。目前支持的占位符有{trigger_prefix}在程序中它会自动替换成bot的触发词。
</details>
@@ -309,24 +311,24 @@ volumes:
```json
{
"model": "MiniMax-M2.1",
"model": "MiniMax-M2.5",
"minimax_api_key": ""
}
```
- `model`: 可填写 `MiniMax-M2.1、MiniMax-M2.1-lightning、MiniMax-M2、abab6.5-chat`
- `model`: 可填写 `MiniMax-M2.5、MiniMax-M2.1、MiniMax-M2.1-lightning、MiniMax-M2、abab6.5-chat`
- `minimax_api_key`MiniMax平台的API-KEY在 [控制台](https://platform.minimaxi.com/user-center/basic-information/interface-key) 创建
方式二OpenAI兼容方式接入配置如下
```json
{
"bot_type": "chatGPT",
"model": "MiniMax-M2.1",
"model": "MiniMax-M2.5",
"open_ai_api_base": "https://api.minimaxi.com/v1",
"open_ai_api_key": ""
}
```
- `bot_type`: OpenAI兼容方式
- `model`: 可填 `MiniMax-M2.1、MiniMax-M2.1-lightning、MiniMax-M2`,参考[API文档](https://platform.minimaxi.com/document/%E5%AF%B9%E8%AF%9D?key=66701d281d57f38758d581d0#QklxsNSbaf6kM4j6wjO5eEek)
- `model`: 可填 `MiniMax-M2.5、MiniMax-M2.1、MiniMax-M2.1-lightning、MiniMax-M2`,参考[API文档](https://platform.minimaxi.com/document/%E5%AF%B9%E8%AF%9D?key=66701d281d57f38758d581d0#QklxsNSbaf6kM4j6wjO5eEek)
- `open_ai_api_base`: MiniMax平台API的 BASE URL
- `open_ai_api_key`: MiniMax平台的API-KEY
</details>
@@ -338,24 +340,24 @@ volumes:
```json
{
"model": "glm-4.7",
"model": "glm-5",
"zhipu_ai_api_key": ""
}
```
- `model`: 可填 `glm-4.7、glm-4-plus、glm-4-flash、glm-4-air、glm-4-airx、glm-4-long` 等, 参考 [glm-4系列模型编码](https://bigmodel.cn/dev/api/normal-model/glm-4)
- `model`: 可填 `glm-5、glm-4.7、glm-4-plus、glm-4-flash、glm-4-air、glm-4-airx、glm-4-long` 等, 参考 [glm系列模型编码](https://bigmodel.cn/dev/api/normal-model/glm-4)
- `zhipu_ai_api_key`: 智谱AI平台的 API KEY在 [控制台](https://www.bigmodel.cn/usercenter/proj-mgmt/apikeys) 创建
方式二OpenAI兼容方式接入配置如下
```json
{
"bot_type": "chatGPT",
"model": "glm-4.7",
"model": "glm-5",
"open_ai_api_base": "https://open.bigmodel.cn/api/paas/v4",
"open_ai_api_key": ""
}
```
- `bot_type`: OpenAI兼容方式
- `model`: 可填 `glm-4.7、glm-4.6、glm-4-plus、glm-4-flash、glm-4-air、glm-4-airx、glm-4-long`
- `model`: 可填 `glm-5、glm-4.7、glm-4-plus、glm-4-flash、glm-4-air、glm-4-airx、glm-4-long`
- `open_ai_api_base`: 智谱AI平台的 BASE URL
- `open_ai_api_key`: 智谱AI平台的 API KEY
</details>
@@ -448,28 +450,46 @@ API Key创建在 [控制台](https://aistudio.google.com/app/apikey?hl=zh-cn)
```json
{
"model": "moonshot-v1-128k",
"model": "kimi-k2.5",
"moonshot_api_key": ""
}
```
- `model`: 可填写 `moonshot-v1-8k、moonshot-v1-32k、moonshot-v1-128k`
- `model`: 可填写 `kimi-k2.5、kimi-k2、moonshot-v1-8k、moonshot-v1-32k、moonshot-v1-128k`
- `moonshot_api_key`: Moonshot的API-KEY在 [控制台](https://platform.moonshot.cn/console/api-keys) 创建
方式二OpenAI兼容方式接入配置如下
```json
{
"bot_type": "chatGPT",
"model": "moonshot-v1-128k",
"model": "kimi-k2.5",
"open_ai_api_base": "https://api.moonshot.cn/v1",
"open_ai_api_key": ""
}
```
- `bot_type`: OpenAI兼容方式
- `model`: 可填写 `moonshot-v1-8k、moonshot-v1-32k、moonshot-v1-128k`
- `model`: 可填写 `kimi-k2.5、kimi-k2、moonshot-v1-8k、moonshot-v1-32k、moonshot-v1-128k`
- `open_ai_api_base`: Moonshot的 BASE URL
- `open_ai_api_key`: Moonshot的 API-KEY
</details>
<details>
<summary>豆包 (Doubao)</summary>
1. API Key创建在 [火山方舟控制台](https://console.volcengine.com/ark/region:ark+cn-beijing/apikey) 创建API Key
2. 填写配置
```json
{
"model": "doubao-seed-2-0-code-preview-260215",
"ark_api_key": "YOUR_API_KEY"
}
```
- `model`: 可填写 `doubao-seed-2-0-code-preview-260215、doubao-seed-2-0-pro-260215、doubao-seed-2-0-lite-260215、doubao-seed-2-0-mini-260215`
- `ark_api_key`: 火山方舟平台的 API Key在 [控制台](https://console.volcengine.com/ark/region:ark+cn-beijing/apikey) 创建
- `ark_base_url`: 可选,默认为 `https://ark.cn-beijing.volces.com/api/v3`
</details>
<details>
<summary>Azure</summary>

View File

@@ -58,6 +58,9 @@ class Bridge(object):
if model_type and model_type.startswith("kimi"):
self.btype["chat"] = const.MOONSHOT
if model_type and model_type.startswith("doubao"):
self.btype["chat"] = const.DOUBAO
if model_type in [const.MODELSCOPE]:
self.btype["chat"] = const.MODELSCOPE

View File

@@ -83,12 +83,14 @@ QWEN3_MAX = "qwen3-max" # Qwen3 Max - Agent推荐模型
QWQ_PLUS = "qwq-plus"
# MiniMax
MINIMAX_M2_5 = "MiniMax-M2.5" # MiniMax M2.5 - Latest
MINIMAX_M2_1 = "MiniMax-M2.1" # MiniMax M2.1 - Agent推荐模型
MINIMAX_M2_1_LIGHTNING = "MiniMax-M2.1-lightning" # MiniMax M2.1 极速版
MINIMAX_M2 = "MiniMax-M2" # MiniMax M2
MINIMAX_ABAB6_5 = "abab6.5-chat" # MiniMax abab6.5
# GLM (智谱AI)
GLM_5 = "glm-5" # 智谱 GLM-5 - Latest
GLM_4 = "glm-4"
GLM_4_PLUS = "glm-4-plus"
GLM_4_flash = "glm-4-flash"
@@ -104,6 +106,13 @@ MOONSHOT = "moonshot"
KIMI_K2 = "kimi-k2"
KIMI_K2_5 = "kimi-k2.5"
# Doubao (Volcengine Ark)
DOUBAO = "doubao"
DOUBAO_SEED_2_CODE = "doubao-seed-2-0-code-preview-260215"
DOUBAO_SEED_2_PRO = "doubao-seed-2-0-pro-260215"
DOUBAO_SEED_2_LITE = "doubao-seed-2-0-lite-260215"
DOUBAO_SEED_2_MINI = "doubao-seed-2-0-mini-260215"
# 其他模型
WEN_XIN = "wenxin"
WEN_XIN_4 = "wenxin-4"
@@ -147,16 +156,19 @@ MODEL_LIST = [
QWEN, QWEN_TURBO, QWEN_PLUS, QWEN_MAX, QWEN_LONG, QWEN3_MAX,
# MiniMax
MiniMax, MINIMAX_M2_1, MINIMAX_M2_1_LIGHTNING, MINIMAX_M2, MINIMAX_ABAB6_5,
MiniMax, MINIMAX_M2_5, MINIMAX_M2_1, MINIMAX_M2_1_LIGHTNING, MINIMAX_M2, MINIMAX_ABAB6_5,
# GLM
ZHIPU_AI, GLM_4, GLM_4_PLUS, GLM_4_flash, GLM_4_LONG, GLM_4_ALLTOOLS,
ZHIPU_AI, GLM_5, GLM_4, GLM_4_PLUS, GLM_4_flash, GLM_4_LONG, GLM_4_ALLTOOLS,
GLM_4_0520, GLM_4_AIR, GLM_4_AIRX, GLM_4_7,
# Kimi
MOONSHOT, "moonshot-v1-8k", "moonshot-v1-32k", "moonshot-v1-128k",
KIMI_K2, KIMI_K2_5,
# Doubao
DOUBAO, DOUBAO_SEED_2_CODE, DOUBAO_SEED_2_PRO, DOUBAO_SEED_2_LITE, DOUBAO_SEED_2_MINI,
# 其他模型
WEN_XIN, WEN_XIN_4, XUNFEI,
LINKAI_35, LINKAI_4_TURBO, LINKAI_4o,

View File

@@ -1,15 +1,17 @@
{
"channel_type": "web",
"model": "glm-4.7",
"model": "MiniMax-M2.5",
"minimax_api_key": "",
"zhipu_ai_api_key": "",
"ark_api_key": "",
"moonshot_api_key": "",
"dashscope_api_key": "",
"claude_api_key": "",
"claude_api_base": "https://api.anthropic.com/v1",
"open_ai_api_key": "",
"open_ai_api_base": "https://api.openai.com/v1",
"gemini_api_key": "",
"gemini_api_base": "https://generativelanguage.googleapis.com",
"zhipu_ai_api_key": "",
"minimax_api_key": "",
"dashscope_api_key": "",
"voice_to_text": "openai",
"text_to_voice": "openai",
"voice_reply_voice": false,

View File

@@ -8,7 +8,7 @@ Cow项目从简单的聊天机器人全面升级为超级智能助理 **CowAgent
- **工具系统**内置实现10+种工具包括文件读写、bash终端、浏览器、定时任务、记忆管理等通过Agent管理你的计算机或服务器
- **长期记忆**:自动将对话记忆持久化至本地文件和数据库中,包括全局记忆和天级记忆,支持关键词及向量检索
- **Skills系统**新增Skill运行引擎内置多种技能并支持通过自然语言对话完成自定义Skills开发
- **多渠道和多模型支持**支持在Web、飞书、钉钉、企微等多渠道与Agent交互支持Claude、Gemini、OpenAI、GLM、MiniMax、Qwen 等多种国内外主流模型
- **多渠道和多模型支持**支持在Web、飞书、钉钉、企微等多渠道与Agent交互支持Claude、Gemini、OpenAI、GLM、MiniMax、Qwen、Kimi、Doubao 等多种国内外主流模型
- **安全和成本**通过秘钥管理工具、提示词控制、系统权限等手段控制Agent的访问安全通过最大记忆轮次、最大上下文token、工具执行步数对token成本进行限制
@@ -137,11 +137,13 @@ bash <(curl -sS https://cdn.link-ai.tech/code/cow/run.sh)
Agent模式推荐使用以下模型可根据效果及成本综合选择
- **MiniMax**: `MiniMax-M2.1`
- **GLM**: `glm-4.7`
- **MiniMax**: `MiniMax-M2.5`
- **GLM**: `glm-5`
- **Kimi**: `kimi-k2.5`
- **Doubao**: `doubao-seed-2-0-code-preview-260215`
- **Qwen**: `qwen3-max`
- **Claude**: `claude-sonnet-4-5``claude-sonnet-4-0`
- **Gemini**: `gemini-3-flash-preview``gemini-3-pro-preview`
- **Claude**: `claude-sonnet-4-5`
- **Gemini**: `gemini-3-flash-preview`
详细模型配置方式参考 [README.md 模型说明](../README.md#模型说明)

View File

@@ -69,5 +69,8 @@ def create_bot(bot_type):
from models.modelscope.modelscope_bot import ModelScopeBot
return ModelScopeBot()
elif bot_type == const.DOUBAO:
from models.doubao.doubao_bot import DoubaoBot
return DoubaoBot()
raise RuntimeError

View File

520
models/doubao/doubao_bot.py Normal file
View File

@@ -0,0 +1,520 @@
# encoding:utf-8
import json
import time
import requests
from models.bot import Bot
from models.session_manager import SessionManager
from bridge.context import ContextType
from bridge.reply import Reply, ReplyType
from common.log import logger
from config import conf, load_config
from .doubao_session import DoubaoSession
# Doubao (火山方舟 / Volcengine Ark) API Bot
class DoubaoBot(Bot):
def __init__(self):
super().__init__()
self.sessions = SessionManager(DoubaoSession, model=conf().get("model") or "doubao-seed-2-0-pro-260215")
model = conf().get("model") or "doubao-seed-2-0-pro-260215"
self.args = {
"model": model,
"temperature": conf().get("temperature", 0.8),
"top_p": conf().get("top_p", 1.0),
}
self.api_key = conf().get("ark_api_key")
self.base_url = conf().get("ark_base_url", "https://ark.cn-beijing.volces.com/api/v3")
# Ensure base_url does not end with /chat/completions
if self.base_url.endswith("/chat/completions"):
self.base_url = self.base_url.rsplit("/chat/completions", 1)[0]
if self.base_url.endswith("/"):
self.base_url = self.base_url.rstrip("/")
def reply(self, query, context=None):
# acquire reply content
if context.type == ContextType.TEXT:
logger.info("[DOUBAO] query={}".format(query))
session_id = context["session_id"]
reply = None
clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"])
if query in clear_memory_commands:
self.sessions.clear_session(session_id)
reply = Reply(ReplyType.INFO, "记忆已清除")
elif query == "#清除所有":
self.sessions.clear_all_session()
reply = Reply(ReplyType.INFO, "所有人记忆已清除")
elif query == "#更新配置":
load_config()
reply = Reply(ReplyType.INFO, "配置已更新")
if reply:
return reply
session = self.sessions.session_query(query, session_id)
logger.debug("[DOUBAO] session query={}".format(session.messages))
model = context.get("doubao_model")
new_args = self.args.copy()
if model:
new_args["model"] = model
reply_content = self.reply_text(session, args=new_args)
logger.debug(
"[DOUBAO] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(
session.messages,
session_id,
reply_content["content"],
reply_content["completion_tokens"],
)
)
if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0:
reply = Reply(ReplyType.ERROR, reply_content["content"])
elif reply_content["completion_tokens"] > 0:
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
reply = Reply(ReplyType.TEXT, reply_content["content"])
else:
reply = Reply(ReplyType.ERROR, reply_content["content"])
logger.debug("[DOUBAO] reply {} used 0 tokens.".format(reply_content))
return reply
else:
reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type))
return reply
def reply_text(self, session: DoubaoSession, args=None, retry_count: int = 0) -> dict:
"""
Call Doubao chat completion API to get the answer
:param session: a conversation session
:param args: model args
:param retry_count: retry count
:return: {}
"""
try:
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer " + self.api_key
}
body = args.copy()
body["messages"] = session.messages
# Disable thinking by default for better efficiency
body["thinking"] = {"type": "disabled"}
res = requests.post(
f"{self.base_url}/chat/completions",
headers=headers,
json=body
)
if res.status_code == 200:
response = res.json()
return {
"total_tokens": response["usage"]["total_tokens"],
"completion_tokens": response["usage"]["completion_tokens"],
"content": response["choices"][0]["message"]["content"]
}
else:
response = res.json()
error = response.get("error", {})
logger.error(f"[DOUBAO] chat failed, status_code={res.status_code}, "
f"msg={error.get('message')}, type={error.get('type')}")
result = {"completion_tokens": 0, "content": "提问太快啦,请休息一下再问我吧"}
need_retry = False
if res.status_code >= 500:
logger.warn(f"[DOUBAO] do retry, times={retry_count}")
need_retry = retry_count < 2
elif res.status_code == 401:
result["content"] = "授权失败请检查API Key是否正确"
elif res.status_code == 429:
result["content"] = "请求过于频繁,请稍后再试"
need_retry = retry_count < 2
else:
need_retry = False
if need_retry:
time.sleep(3)
return self.reply_text(session, args, retry_count + 1)
else:
return result
except Exception as e:
logger.exception(e)
need_retry = retry_count < 2
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
if need_retry:
return self.reply_text(session, args, retry_count + 1)
else:
return result
# ==================== Agent mode support ====================
def call_with_tools(self, messages, tools=None, stream: bool = False, **kwargs):
"""
Call Doubao API with tool support for agent integration.
This method handles:
1. Format conversion (Claude format -> OpenAI format)
2. System prompt injection
3. Streaming SSE response with tool_calls
4. Thinking (reasoning) is disabled by default for efficiency
Args:
messages: List of messages (may be in Claude format from agent)
tools: List of tool definitions (may be in Claude format from agent)
stream: Whether to use streaming
**kwargs: Additional parameters (max_tokens, temperature, system, model, etc.)
Returns:
Generator yielding OpenAI-format chunks (for streaming)
"""
try:
# Convert messages from Claude format to OpenAI format
converted_messages = self._convert_messages_to_openai_format(messages)
# Inject system prompt if provided
system_prompt = kwargs.pop("system", None)
if system_prompt:
if not converted_messages or converted_messages[0].get("role") != "system":
converted_messages.insert(0, {"role": "system", "content": system_prompt})
else:
converted_messages[0] = {"role": "system", "content": system_prompt}
# Convert tools from Claude format to OpenAI format
converted_tools = None
if tools:
converted_tools = self._convert_tools_to_openai_format(tools)
# Resolve model / temperature
model = kwargs.pop("model", None) or self.args["model"]
max_tokens = kwargs.pop("max_tokens", None)
# Don't pop temperature, just ignore it - let API use default
kwargs.pop("temperature", None)
# Build request body (omit temperature, let the API use its own default)
request_body = {
"model": model,
"messages": converted_messages,
"stream": stream,
}
if max_tokens is not None:
request_body["max_tokens"] = max_tokens
# Add tools
if converted_tools:
request_body["tools"] = converted_tools
request_body["tool_choice"] = "auto"
# Explicitly disable thinking to avoid reasoning_content issues
# in multi-turn tool calls
request_body["thinking"] = {"type": "disabled"}
logger.debug(f"[DOUBAO] API call: model={model}, "
f"tools={len(converted_tools) if converted_tools else 0}, stream={stream}")
if stream:
return self._handle_stream_response(request_body)
else:
return self._handle_sync_response(request_body)
except Exception as e:
logger.error(f"[DOUBAO] call_with_tools error: {e}")
import traceback
logger.error(traceback.format_exc())
def error_generator():
yield {"error": True, "message": str(e), "status_code": 500}
return error_generator()
# -------------------- streaming --------------------
def _handle_stream_response(self, request_body: dict):
"""Handle streaming SSE response from Doubao API and yield OpenAI-format chunks."""
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}"
}
url = f"{self.base_url}/chat/completions"
response = requests.post(url, headers=headers, json=request_body, stream=True, timeout=120)
if response.status_code != 200:
error_msg = response.text
logger.error(f"[DOUBAO] API error: status={response.status_code}, msg={error_msg}")
yield {"error": True, "message": error_msg, "status_code": response.status_code}
return
current_tool_calls = {}
finish_reason = None
for line in response.iter_lines():
if not line:
continue
line = line.decode("utf-8")
if not line.startswith("data: "):
continue
data_str = line[6:] # Remove "data: " prefix
if data_str.strip() == "[DONE]":
break
try:
chunk = json.loads(data_str)
except json.JSONDecodeError as e:
logger.warning(f"[DOUBAO] JSON decode error: {e}, data: {data_str[:200]}")
continue
# Check for error in chunk
if chunk.get("error"):
error_data = chunk["error"]
error_msg = error_data.get("message", "Unknown error") if isinstance(error_data, dict) else str(error_data)
logger.error(f"[DOUBAO] stream error: {error_msg}")
yield {"error": True, "message": error_msg, "status_code": 500}
return
if not chunk.get("choices"):
continue
choice = chunk["choices"][0]
delta = choice.get("delta", {})
# Skip reasoning_content (thinking) - don't log or forward
if delta.get("reasoning_content"):
continue
# Handle text content
if "content" in delta and delta["content"]:
yield {
"choices": [{
"index": 0,
"delta": {
"role": "assistant",
"content": delta["content"]
}
}]
}
# Handle tool_calls (streamed incrementally)
if "tool_calls" in delta:
for tool_call_chunk in delta["tool_calls"]:
index = tool_call_chunk.get("index", 0)
if index not in current_tool_calls:
current_tool_calls[index] = {
"id": tool_call_chunk.get("id", ""),
"type": "tool_use",
"name": tool_call_chunk.get("function", {}).get("name", ""),
"input": ""
}
# Accumulate arguments
if "function" in tool_call_chunk and "arguments" in tool_call_chunk["function"]:
current_tool_calls[index]["input"] += tool_call_chunk["function"]["arguments"]
# Yield OpenAI-format tool call delta
yield {
"choices": [{
"index": 0,
"delta": {
"tool_calls": [tool_call_chunk]
}
}]
}
# Capture finish_reason
if choice.get("finish_reason"):
finish_reason = choice["finish_reason"]
# Final chunk with finish_reason
yield {
"choices": [{
"index": 0,
"delta": {},
"finish_reason": finish_reason
}]
}
except requests.exceptions.Timeout:
logger.error("[DOUBAO] Request timeout")
yield {"error": True, "message": "Request timeout", "status_code": 500}
except Exception as e:
logger.error(f"[DOUBAO] stream response error: {e}")
import traceback
logger.error(traceback.format_exc())
yield {"error": True, "message": str(e), "status_code": 500}
# -------------------- sync --------------------
def _handle_sync_response(self, request_body: dict):
"""Handle synchronous API response and yield a single result dict."""
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}"
}
request_body.pop("stream", None)
url = f"{self.base_url}/chat/completions"
response = requests.post(url, headers=headers, json=request_body, timeout=120)
if response.status_code != 200:
error_msg = response.text
logger.error(f"[DOUBAO] API error: status={response.status_code}, msg={error_msg}")
yield {"error": True, "message": error_msg, "status_code": response.status_code}
return
result = response.json()
message = result["choices"][0]["message"]
finish_reason = result["choices"][0]["finish_reason"]
response_data = {"role": "assistant", "content": []}
# Add text content
if message.get("content"):
response_data["content"].append({
"type": "text",
"text": message["content"]
})
# Add tool calls
if message.get("tool_calls"):
for tool_call in message["tool_calls"]:
response_data["content"].append({
"type": "tool_use",
"id": tool_call["id"],
"name": tool_call["function"]["name"],
"input": json.loads(tool_call["function"]["arguments"])
})
# Map finish_reason
if finish_reason == "tool_calls":
response_data["stop_reason"] = "tool_use"
elif finish_reason == "stop":
response_data["stop_reason"] = "end_turn"
else:
response_data["stop_reason"] = finish_reason
yield response_data
except requests.exceptions.Timeout:
logger.error("[DOUBAO] Request timeout")
yield {"error": True, "message": "Request timeout", "status_code": 500}
except Exception as e:
logger.error(f"[DOUBAO] sync response error: {e}")
import traceback
logger.error(traceback.format_exc())
yield {"error": True, "message": str(e), "status_code": 500}
# -------------------- format conversion --------------------
def _convert_messages_to_openai_format(self, messages):
"""
Convert messages from Claude format to OpenAI format.
Claude format uses content blocks: tool_use / tool_result / text
OpenAI format uses tool_calls in assistant, role=tool for results
"""
if not messages:
return []
converted = []
for msg in messages:
role = msg.get("role")
content = msg.get("content")
# Already a simple string - pass through
if isinstance(content, str):
converted.append(msg)
continue
if not isinstance(content, list):
converted.append(msg)
continue
if role == "user":
text_parts = []
tool_results = []
for block in content:
if not isinstance(block, dict):
continue
if block.get("type") == "text":
text_parts.append(block.get("text", ""))
elif block.get("type") == "tool_result":
tool_call_id = block.get("tool_use_id") or ""
result_content = block.get("content", "")
if not isinstance(result_content, str):
result_content = json.dumps(result_content, ensure_ascii=False)
tool_results.append({
"role": "tool",
"tool_call_id": tool_call_id,
"content": result_content
})
# Tool results first (must come right after assistant with tool_calls)
for tr in tool_results:
converted.append(tr)
if text_parts:
converted.append({"role": "user", "content": "\n".join(text_parts)})
elif role == "assistant":
openai_msg = {"role": "assistant"}
text_parts = []
tool_calls = []
for block in content:
if not isinstance(block, dict):
continue
if block.get("type") == "text":
text_parts.append(block.get("text", ""))
elif block.get("type") == "tool_use":
tool_calls.append({
"id": block.get("id"),
"type": "function",
"function": {
"name": block.get("name"),
"arguments": json.dumps(block.get("input", {}))
}
})
if text_parts:
openai_msg["content"] = "\n".join(text_parts)
elif not tool_calls:
openai_msg["content"] = ""
if tool_calls:
openai_msg["tool_calls"] = tool_calls
if not text_parts:
openai_msg["content"] = None
converted.append(openai_msg)
else:
converted.append(msg)
return converted
def _convert_tools_to_openai_format(self, tools):
"""
Convert tools from Claude format to OpenAI format.
Claude: {name, description, input_schema}
OpenAI: {type: "function", function: {name, description, parameters}}
"""
if not tools:
return None
converted = []
for tool in tools:
# Already in OpenAI format
if "type" in tool and tool["type"] == "function":
converted.append(tool)
else:
converted.append({
"type": "function",
"function": {
"name": tool.get("name"),
"description": tool.get("description"),
"parameters": tool.get("input_schema", {})
}
})
return converted

View File

@@ -0,0 +1,51 @@
from models.session_manager import Session
from common.log import logger
class DoubaoSession(Session):
def __init__(self, session_id, system_prompt=None, model="doubao-seed-2-0-pro-260215"):
super().__init__(session_id, system_prompt)
self.model = model
self.reset()
def discard_exceeding(self, max_tokens, cur_tokens=None):
precise = True
try:
cur_tokens = self.calc_tokens()
except Exception as e:
precise = False
if cur_tokens is None:
raise e
logger.debug("Exception when counting tokens precisely for query: {}".format(e))
while cur_tokens > max_tokens:
if len(self.messages) > 2:
self.messages.pop(1)
elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant":
self.messages.pop(1)
if precise:
cur_tokens = self.calc_tokens()
else:
cur_tokens = cur_tokens - max_tokens
break
elif len(self.messages) == 2 and self.messages[1]["role"] == "user":
logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens))
break
else:
logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(
max_tokens, cur_tokens, len(self.messages)))
break
if precise:
cur_tokens = self.calc_tokens()
else:
cur_tokens = cur_tokens - max_tokens
return cur_tokens
def calc_tokens(self):
return num_tokens_from_messages(self.messages, self.model)
def num_tokens_from_messages(messages, model):
tokens = 0
for msg in messages:
tokens += len(msg["content"])
return tokens