mirror of
https://github.com/zhayujie/chatgpt-on-wechat.git
synced 2026-02-17 08:28:49 +08:00
feat: add doubao-2.0-code model and update README
This commit is contained in:
52
README.md
52
README.md
@@ -18,7 +18,7 @@
|
||||
- ✅ **长期记忆:** 自动将对话记忆持久化至本地文件和数据库中,包括全局记忆和天级记忆,支持关键词及向量检索
|
||||
- ✅ **技能系统:** 实现了Skills创建和运行的引擎,内置多种技能,并支持通过自然语言对话完成自定义Skills开发
|
||||
- ✅ **多模态消息:** 支持对文本、图片、语音、文件等多类型消息进行解析、处理、生成、发送等操作
|
||||
- ✅ **多模型接入:** 支持OpenAI, Claude, Gemini, DeepSeek, MiniMax、GLM、Qwen、Kimi等国内外主流模型厂商
|
||||
- ✅ **多模型接入:** 支持OpenAI, Claude, Gemini, DeepSeek, MiniMax、GLM、Qwen、Kimi、Doubao等国内外主流模型厂商
|
||||
- ✅ **多端部署:** 支持运行在本地计算机或服务器,可集成到网页、飞书、钉钉、微信公众号、企业微信应用中使用
|
||||
- ✅ **知识库:** 集成企业知识库能力,让Agent成为专属数字员工,基于[LinkAI](https://link-ai.tech)平台实现
|
||||
|
||||
@@ -90,7 +90,7 @@ bash <(curl -sS https://cdn.link-ai.tech/code/cow/run.sh)
|
||||
|
||||
项目支持国内外主流厂商的模型接口,可选模型及配置说明参考:[模型说明](#模型说明)。
|
||||
|
||||
> 注:Agent模式下推荐使用以下模型,可根据效果及成本综合选择:GLM(glm-4.7)、MiniMAx(MiniMax-M2.1)、Qwen(qwen3-max)、Claude(claude-opus-4-6、claude-sonnet-4-5、claude-sonnet-4-0)、Gemini(gemini-3-flash-preview、gemini-3-pro-preview)
|
||||
> 注:Agent模式下推荐使用以下模型,可根据效果及成本综合选择:MiniMax(MiniMax-M2.5)、GLM(glm-5)、Kimi(kimi-k2.5)、Qwen(qwen3-max)、Claude(claude-sonnet-4-5)、Gemini(gemini-3-flash-preview)
|
||||
|
||||
同时支持使用 **LinkAI平台** 接口,可灵活切换 OpenAI、Claude、Gemini、DeepSeek、Qwen、Kimi 等多种常用模型,并支持知识库、工作流、插件等Agent能力,参考 [接口文档](https://docs.link-ai.tech/platform/api)。
|
||||
|
||||
@@ -136,9 +136,11 @@ pip3 install -r requirements-optional.txt
|
||||
# config.json 文件内容示例
|
||||
{
|
||||
"channel_type": "web", # 接入渠道类型,默认为web,支持修改为:feishu,dingtalk,wechatcom_app,terminal,wechatmp,wechatmp_service
|
||||
"model": "MiniMax-M2.1", # 模型名称
|
||||
"model": "MiniMax-M2.5", # 模型名称
|
||||
"minimax_api_key": "", # MiniMax API Key
|
||||
"zhipu_ai_api_key": "", # 智谱GLM API Key
|
||||
"moonshot_api_key": "", # Kimi/Moonshot API Key
|
||||
"ark_api_key": "", # 豆包(火山方舟) API Key
|
||||
"dashscope_api_key": "", # 百炼(通义千问)API Key
|
||||
"claude_api_key": "", # Claude API Key
|
||||
"claude_api_base": "https://api.anthropic.com/v1", # Claude API 地址,修改可接入三方代理平台
|
||||
@@ -173,7 +175,7 @@ pip3 install -r requirements-optional.txt
|
||||
<details>
|
||||
<summary>2. 其他配置</summary>
|
||||
|
||||
+ `model`: 模型名称,Agent模式下推荐使用 `glm-4.7`、`MiniMax-M2.1`、`qwen3-max`、`claude-opus-4-6`、`claude-sonnet-4-5`、`claude-sonnet-4-0`、`gemini-3-flash-preview`、`gemini-3-pro-preview`,全部模型名称参考[common/const.py](https://github.com/zhayujie/chatgpt-on-wechat/blob/master/common/const.py)文件
|
||||
+ `model`: 模型名称,Agent模式下推荐使用 `MiniMax-M2.5`、`glm-5`、`kimi-k2.5`、`qwen3-max`、`claude-sonnet-4-5`、`gemini-3-flash-preview`,全部模型名称参考[common/const.py](https://github.com/zhayujie/chatgpt-on-wechat/blob/master/common/const.py)文件
|
||||
+ `character_desc`:普通对话模式下的机器人系统提示词。在Agent模式下该配置不生效,由工作空间中的文件内容构成。
|
||||
+ `subscribe_msg`:订阅消息,公众号和企业微信channel中请填写,当被订阅时会自动回复, 可使用特殊占位符。目前支持的占位符有{trigger_prefix},在程序中它会自动替换成bot的触发词。
|
||||
</details>
|
||||
@@ -309,24 +311,24 @@ volumes:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "MiniMax-M2.1",
|
||||
"model": "MiniMax-M2.5",
|
||||
"minimax_api_key": ""
|
||||
}
|
||||
```
|
||||
- `model`: 可填写 `MiniMax-M2.1、MiniMax-M2.1-lightning、MiniMax-M2、abab6.5-chat` 等
|
||||
- `model`: 可填写 `MiniMax-M2.5、MiniMax-M2.1、MiniMax-M2.1-lightning、MiniMax-M2、abab6.5-chat` 等
|
||||
- `minimax_api_key`:MiniMax平台的API-KEY,在 [控制台](https://platform.minimaxi.com/user-center/basic-information/interface-key) 创建
|
||||
|
||||
方式二:OpenAI兼容方式接入,配置如下:
|
||||
```json
|
||||
{
|
||||
"bot_type": "chatGPT",
|
||||
"model": "MiniMax-M2.1",
|
||||
"model": "MiniMax-M2.5",
|
||||
"open_ai_api_base": "https://api.minimaxi.com/v1",
|
||||
"open_ai_api_key": ""
|
||||
}
|
||||
```
|
||||
- `bot_type`: OpenAI兼容方式
|
||||
- `model`: 可填 `MiniMax-M2.1、MiniMax-M2.1-lightning、MiniMax-M2`,参考[API文档](https://platform.minimaxi.com/document/%E5%AF%B9%E8%AF%9D?key=66701d281d57f38758d581d0#QklxsNSbaf6kM4j6wjO5eEek)
|
||||
- `model`: 可填 `MiniMax-M2.5、MiniMax-M2.1、MiniMax-M2.1-lightning、MiniMax-M2`,参考[API文档](https://platform.minimaxi.com/document/%E5%AF%B9%E8%AF%9D?key=66701d281d57f38758d581d0#QklxsNSbaf6kM4j6wjO5eEek)
|
||||
- `open_ai_api_base`: MiniMax平台API的 BASE URL
|
||||
- `open_ai_api_key`: MiniMax平台的API-KEY
|
||||
</details>
|
||||
@@ -338,24 +340,24 @@ volumes:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "glm-4.7",
|
||||
"model": "glm-5",
|
||||
"zhipu_ai_api_key": ""
|
||||
}
|
||||
```
|
||||
- `model`: 可填 `glm-4.7、glm-4-plus、glm-4-flash、glm-4-air、glm-4-airx、glm-4-long` 等, 参考 [glm-4系列模型编码](https://bigmodel.cn/dev/api/normal-model/glm-4)
|
||||
- `model`: 可填 `glm-5、glm-4.7、glm-4-plus、glm-4-flash、glm-4-air、glm-4-airx、glm-4-long` 等, 参考 [glm系列模型编码](https://bigmodel.cn/dev/api/normal-model/glm-4)
|
||||
- `zhipu_ai_api_key`: 智谱AI平台的 API KEY,在 [控制台](https://www.bigmodel.cn/usercenter/proj-mgmt/apikeys) 创建
|
||||
|
||||
方式二:OpenAI兼容方式接入,配置如下:
|
||||
```json
|
||||
{
|
||||
"bot_type": "chatGPT",
|
||||
"model": "glm-4.7",
|
||||
"model": "glm-5",
|
||||
"open_ai_api_base": "https://open.bigmodel.cn/api/paas/v4",
|
||||
"open_ai_api_key": ""
|
||||
}
|
||||
```
|
||||
- `bot_type`: OpenAI兼容方式
|
||||
- `model`: 可填 `glm-4.7、glm-4.6、glm-4-plus、glm-4-flash、glm-4-air、glm-4-airx、glm-4-long` 等
|
||||
- `model`: 可填 `glm-5、glm-4.7、glm-4-plus、glm-4-flash、glm-4-air、glm-4-airx、glm-4-long` 等
|
||||
- `open_ai_api_base`: 智谱AI平台的 BASE URL
|
||||
- `open_ai_api_key`: 智谱AI平台的 API KEY
|
||||
</details>
|
||||
@@ -448,28 +450,46 @@ API Key创建:在 [控制台](https://aistudio.google.com/app/apikey?hl=zh-cn)
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "moonshot-v1-128k",
|
||||
"model": "kimi-k2.5",
|
||||
"moonshot_api_key": ""
|
||||
}
|
||||
```
|
||||
- `model`: 可填写 `moonshot-v1-8k、moonshot-v1-32k、moonshot-v1-128k`
|
||||
- `model`: 可填写 `kimi-k2.5、kimi-k2、moonshot-v1-8k、moonshot-v1-32k、moonshot-v1-128k`
|
||||
- `moonshot_api_key`: Moonshot的API-KEY,在 [控制台](https://platform.moonshot.cn/console/api-keys) 创建
|
||||
|
||||
方式二:OpenAI兼容方式接入,配置如下:
|
||||
```json
|
||||
{
|
||||
"bot_type": "chatGPT",
|
||||
"model": "moonshot-v1-128k",
|
||||
"model": "kimi-k2.5",
|
||||
"open_ai_api_base": "https://api.moonshot.cn/v1",
|
||||
"open_ai_api_key": ""
|
||||
}
|
||||
```
|
||||
- `bot_type`: OpenAI兼容方式
|
||||
- `model`: 可填写 `moonshot-v1-8k、moonshot-v1-32k、moonshot-v1-128k`
|
||||
- `model`: 可填写 `kimi-k2.5、kimi-k2、moonshot-v1-8k、moonshot-v1-32k、moonshot-v1-128k`
|
||||
- `open_ai_api_base`: Moonshot的 BASE URL
|
||||
- `open_ai_api_key`: Moonshot的 API-KEY
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>豆包 (Doubao)</summary>
|
||||
|
||||
1. API Key创建:在 [火山方舟控制台](https://console.volcengine.com/ark/region:ark+cn-beijing/apikey) 创建API Key
|
||||
|
||||
2. 填写配置
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "doubao-seed-2-0-code-preview-260215",
|
||||
"ark_api_key": "YOUR_API_KEY"
|
||||
}
|
||||
```
|
||||
- `model`: 可填写 `doubao-seed-2-0-code-preview-260215、doubao-seed-2-0-pro-260215、doubao-seed-2-0-lite-260215、doubao-seed-2-0-mini-260215` 等
|
||||
- `ark_api_key`: 火山方舟平台的 API Key,在 [控制台](https://console.volcengine.com/ark/region:ark+cn-beijing/apikey) 创建
|
||||
- `ark_base_url`: 可选,默认为 `https://ark.cn-beijing.volces.com/api/v3`
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Azure</summary>
|
||||
|
||||
|
||||
@@ -58,6 +58,9 @@ class Bridge(object):
|
||||
if model_type and model_type.startswith("kimi"):
|
||||
self.btype["chat"] = const.MOONSHOT
|
||||
|
||||
if model_type and model_type.startswith("doubao"):
|
||||
self.btype["chat"] = const.DOUBAO
|
||||
|
||||
if model_type in [const.MODELSCOPE]:
|
||||
self.btype["chat"] = const.MODELSCOPE
|
||||
|
||||
|
||||
@@ -83,12 +83,14 @@ QWEN3_MAX = "qwen3-max" # Qwen3 Max - Agent推荐模型
|
||||
QWQ_PLUS = "qwq-plus"
|
||||
|
||||
# MiniMax
|
||||
MINIMAX_M2_5 = "MiniMax-M2.5" # MiniMax M2.5 - Latest
|
||||
MINIMAX_M2_1 = "MiniMax-M2.1" # MiniMax M2.1 - Agent推荐模型
|
||||
MINIMAX_M2_1_LIGHTNING = "MiniMax-M2.1-lightning" # MiniMax M2.1 极速版
|
||||
MINIMAX_M2 = "MiniMax-M2" # MiniMax M2
|
||||
MINIMAX_ABAB6_5 = "abab6.5-chat" # MiniMax abab6.5
|
||||
|
||||
# GLM (智谱AI)
|
||||
GLM_5 = "glm-5" # 智谱 GLM-5 - Latest
|
||||
GLM_4 = "glm-4"
|
||||
GLM_4_PLUS = "glm-4-plus"
|
||||
GLM_4_flash = "glm-4-flash"
|
||||
@@ -104,6 +106,13 @@ MOONSHOT = "moonshot"
|
||||
KIMI_K2 = "kimi-k2"
|
||||
KIMI_K2_5 = "kimi-k2.5"
|
||||
|
||||
# Doubao (Volcengine Ark)
|
||||
DOUBAO = "doubao"
|
||||
DOUBAO_SEED_2_CODE = "doubao-seed-2-0-code-preview-260215"
|
||||
DOUBAO_SEED_2_PRO = "doubao-seed-2-0-pro-260215"
|
||||
DOUBAO_SEED_2_LITE = "doubao-seed-2-0-lite-260215"
|
||||
DOUBAO_SEED_2_MINI = "doubao-seed-2-0-mini-260215"
|
||||
|
||||
# 其他模型
|
||||
WEN_XIN = "wenxin"
|
||||
WEN_XIN_4 = "wenxin-4"
|
||||
@@ -147,16 +156,19 @@ MODEL_LIST = [
|
||||
QWEN, QWEN_TURBO, QWEN_PLUS, QWEN_MAX, QWEN_LONG, QWEN3_MAX,
|
||||
|
||||
# MiniMax
|
||||
MiniMax, MINIMAX_M2_1, MINIMAX_M2_1_LIGHTNING, MINIMAX_M2, MINIMAX_ABAB6_5,
|
||||
|
||||
MiniMax, MINIMAX_M2_5, MINIMAX_M2_1, MINIMAX_M2_1_LIGHTNING, MINIMAX_M2, MINIMAX_ABAB6_5,
|
||||
|
||||
# GLM
|
||||
ZHIPU_AI, GLM_4, GLM_4_PLUS, GLM_4_flash, GLM_4_LONG, GLM_4_ALLTOOLS,
|
||||
ZHIPU_AI, GLM_5, GLM_4, GLM_4_PLUS, GLM_4_flash, GLM_4_LONG, GLM_4_ALLTOOLS,
|
||||
GLM_4_0520, GLM_4_AIR, GLM_4_AIRX, GLM_4_7,
|
||||
|
||||
|
||||
# Kimi
|
||||
MOONSHOT, "moonshot-v1-8k", "moonshot-v1-32k", "moonshot-v1-128k",
|
||||
KIMI_K2, KIMI_K2_5,
|
||||
|
||||
|
||||
# Doubao
|
||||
DOUBAO, DOUBAO_SEED_2_CODE, DOUBAO_SEED_2_PRO, DOUBAO_SEED_2_LITE, DOUBAO_SEED_2_MINI,
|
||||
|
||||
# 其他模型
|
||||
WEN_XIN, WEN_XIN_4, XUNFEI,
|
||||
LINKAI_35, LINKAI_4_TURBO, LINKAI_4o,
|
||||
|
||||
@@ -1,15 +1,17 @@
|
||||
{
|
||||
"channel_type": "web",
|
||||
"model": "glm-4.7",
|
||||
"model": "MiniMax-M2.5",
|
||||
"minimax_api_key": "",
|
||||
"zhipu_ai_api_key": "",
|
||||
"ark_api_key": "",
|
||||
"moonshot_api_key": "",
|
||||
"dashscope_api_key": "",
|
||||
"claude_api_key": "",
|
||||
"claude_api_base": "https://api.anthropic.com/v1",
|
||||
"open_ai_api_key": "",
|
||||
"open_ai_api_base": "https://api.openai.com/v1",
|
||||
"gemini_api_key": "",
|
||||
"gemini_api_base": "https://generativelanguage.googleapis.com",
|
||||
"zhipu_ai_api_key": "",
|
||||
"minimax_api_key": "",
|
||||
"dashscope_api_key": "",
|
||||
"voice_to_text": "openai",
|
||||
"text_to_voice": "openai",
|
||||
"voice_reply_voice": false,
|
||||
|
||||
@@ -8,7 +8,7 @@ Cow项目从简单的聊天机器人全面升级为超级智能助理 **CowAgent
|
||||
- **工具系统**:内置实现10+种工具,包括文件读写、bash终端、浏览器、定时任务、记忆管理等,通过Agent管理你的计算机或服务器
|
||||
- **长期记忆**:自动将对话记忆持久化至本地文件和数据库中,包括全局记忆和天级记忆,支持关键词及向量检索
|
||||
- **Skills系统**:新增Skill运行引擎,内置多种技能,并支持通过自然语言对话完成自定义Skills开发
|
||||
- **多渠道和多模型支持**:支持在Web、飞书、钉钉、企微等多渠道与Agent交互,支持Claude、Gemini、OpenAI、GLM、MiniMax、Qwen 等多种国内外主流模型
|
||||
- **多渠道和多模型支持**:支持在Web、飞书、钉钉、企微等多渠道与Agent交互,支持Claude、Gemini、OpenAI、GLM、MiniMax、Qwen、Kimi、Doubao 等多种国内外主流模型
|
||||
- **安全和成本**:通过秘钥管理工具、提示词控制、系统权限等手段控制Agent的访问安全;通过最大记忆轮次、最大上下文token、工具执行步数对token成本进行限制
|
||||
|
||||
|
||||
@@ -137,11 +137,13 @@ bash <(curl -sS https://cdn.link-ai.tech/code/cow/run.sh)
|
||||
|
||||
Agent模式推荐使用以下模型,可根据效果及成本综合选择:
|
||||
|
||||
- **MiniMax**: `MiniMax-M2.1`
|
||||
- **GLM**: `glm-4.7`
|
||||
- **MiniMax**: `MiniMax-M2.5`
|
||||
- **GLM**: `glm-5`
|
||||
- **Kimi**: `kimi-k2.5`
|
||||
- **Doubao**: `doubao-seed-2-0-code-preview-260215`
|
||||
- **Qwen**: `qwen3-max`
|
||||
- **Claude**: `claude-sonnet-4-5`、`claude-sonnet-4-0`
|
||||
- **Gemini**: `gemini-3-flash-preview`、`gemini-3-pro-preview`
|
||||
- **Claude**: `claude-sonnet-4-5`
|
||||
- **Gemini**: `gemini-3-flash-preview`
|
||||
|
||||
详细模型配置方式参考 [README.md 模型说明](../README.md#模型说明)
|
||||
|
||||
|
||||
@@ -69,5 +69,8 @@ def create_bot(bot_type):
|
||||
from models.modelscope.modelscope_bot import ModelScopeBot
|
||||
return ModelScopeBot()
|
||||
|
||||
elif bot_type == const.DOUBAO:
|
||||
from models.doubao.doubao_bot import DoubaoBot
|
||||
return DoubaoBot()
|
||||
|
||||
raise RuntimeError
|
||||
|
||||
0
models/doubao/__init__.py
Normal file
0
models/doubao/__init__.py
Normal file
520
models/doubao/doubao_bot.py
Normal file
520
models/doubao/doubao_bot.py
Normal file
@@ -0,0 +1,520 @@
|
||||
# encoding:utf-8
|
||||
|
||||
import json
|
||||
import time
|
||||
|
||||
import requests
|
||||
from models.bot import Bot
|
||||
from models.session_manager import SessionManager
|
||||
from bridge.context import ContextType
|
||||
from bridge.reply import Reply, ReplyType
|
||||
from common.log import logger
|
||||
from config import conf, load_config
|
||||
from .doubao_session import DoubaoSession
|
||||
|
||||
|
||||
# Doubao (火山方舟 / Volcengine Ark) API Bot
|
||||
class DoubaoBot(Bot):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.sessions = SessionManager(DoubaoSession, model=conf().get("model") or "doubao-seed-2-0-pro-260215")
|
||||
model = conf().get("model") or "doubao-seed-2-0-pro-260215"
|
||||
self.args = {
|
||||
"model": model,
|
||||
"temperature": conf().get("temperature", 0.8),
|
||||
"top_p": conf().get("top_p", 1.0),
|
||||
}
|
||||
self.api_key = conf().get("ark_api_key")
|
||||
self.base_url = conf().get("ark_base_url", "https://ark.cn-beijing.volces.com/api/v3")
|
||||
# Ensure base_url does not end with /chat/completions
|
||||
if self.base_url.endswith("/chat/completions"):
|
||||
self.base_url = self.base_url.rsplit("/chat/completions", 1)[0]
|
||||
if self.base_url.endswith("/"):
|
||||
self.base_url = self.base_url.rstrip("/")
|
||||
|
||||
def reply(self, query, context=None):
|
||||
# acquire reply content
|
||||
if context.type == ContextType.TEXT:
|
||||
logger.info("[DOUBAO] query={}".format(query))
|
||||
|
||||
session_id = context["session_id"]
|
||||
reply = None
|
||||
clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"])
|
||||
if query in clear_memory_commands:
|
||||
self.sessions.clear_session(session_id)
|
||||
reply = Reply(ReplyType.INFO, "记忆已清除")
|
||||
elif query == "#清除所有":
|
||||
self.sessions.clear_all_session()
|
||||
reply = Reply(ReplyType.INFO, "所有人记忆已清除")
|
||||
elif query == "#更新配置":
|
||||
load_config()
|
||||
reply = Reply(ReplyType.INFO, "配置已更新")
|
||||
if reply:
|
||||
return reply
|
||||
session = self.sessions.session_query(query, session_id)
|
||||
logger.debug("[DOUBAO] session query={}".format(session.messages))
|
||||
|
||||
model = context.get("doubao_model")
|
||||
new_args = self.args.copy()
|
||||
if model:
|
||||
new_args["model"] = model
|
||||
|
||||
reply_content = self.reply_text(session, args=new_args)
|
||||
logger.debug(
|
||||
"[DOUBAO] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(
|
||||
session.messages,
|
||||
session_id,
|
||||
reply_content["content"],
|
||||
reply_content["completion_tokens"],
|
||||
)
|
||||
)
|
||||
if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0:
|
||||
reply = Reply(ReplyType.ERROR, reply_content["content"])
|
||||
elif reply_content["completion_tokens"] > 0:
|
||||
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
|
||||
reply = Reply(ReplyType.TEXT, reply_content["content"])
|
||||
else:
|
||||
reply = Reply(ReplyType.ERROR, reply_content["content"])
|
||||
logger.debug("[DOUBAO] reply {} used 0 tokens.".format(reply_content))
|
||||
return reply
|
||||
else:
|
||||
reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type))
|
||||
return reply
|
||||
|
||||
def reply_text(self, session: DoubaoSession, args=None, retry_count: int = 0) -> dict:
|
||||
"""
|
||||
Call Doubao chat completion API to get the answer
|
||||
:param session: a conversation session
|
||||
:param args: model args
|
||||
:param retry_count: retry count
|
||||
:return: {}
|
||||
"""
|
||||
try:
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": "Bearer " + self.api_key
|
||||
}
|
||||
body = args.copy()
|
||||
body["messages"] = session.messages
|
||||
# Disable thinking by default for better efficiency
|
||||
body["thinking"] = {"type": "disabled"}
|
||||
res = requests.post(
|
||||
f"{self.base_url}/chat/completions",
|
||||
headers=headers,
|
||||
json=body
|
||||
)
|
||||
if res.status_code == 200:
|
||||
response = res.json()
|
||||
return {
|
||||
"total_tokens": response["usage"]["total_tokens"],
|
||||
"completion_tokens": response["usage"]["completion_tokens"],
|
||||
"content": response["choices"][0]["message"]["content"]
|
||||
}
|
||||
else:
|
||||
response = res.json()
|
||||
error = response.get("error", {})
|
||||
logger.error(f"[DOUBAO] chat failed, status_code={res.status_code}, "
|
||||
f"msg={error.get('message')}, type={error.get('type')}")
|
||||
|
||||
result = {"completion_tokens": 0, "content": "提问太快啦,请休息一下再问我吧"}
|
||||
need_retry = False
|
||||
if res.status_code >= 500:
|
||||
logger.warn(f"[DOUBAO] do retry, times={retry_count}")
|
||||
need_retry = retry_count < 2
|
||||
elif res.status_code == 401:
|
||||
result["content"] = "授权失败,请检查API Key是否正确"
|
||||
elif res.status_code == 429:
|
||||
result["content"] = "请求过于频繁,请稍后再试"
|
||||
need_retry = retry_count < 2
|
||||
else:
|
||||
need_retry = False
|
||||
|
||||
if need_retry:
|
||||
time.sleep(3)
|
||||
return self.reply_text(session, args, retry_count + 1)
|
||||
else:
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
need_retry = retry_count < 2
|
||||
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
|
||||
if need_retry:
|
||||
return self.reply_text(session, args, retry_count + 1)
|
||||
else:
|
||||
return result
|
||||
|
||||
# ==================== Agent mode support ====================
|
||||
|
||||
def call_with_tools(self, messages, tools=None, stream: bool = False, **kwargs):
|
||||
"""
|
||||
Call Doubao API with tool support for agent integration.
|
||||
|
||||
This method handles:
|
||||
1. Format conversion (Claude format -> OpenAI format)
|
||||
2. System prompt injection
|
||||
3. Streaming SSE response with tool_calls
|
||||
4. Thinking (reasoning) is disabled by default for efficiency
|
||||
|
||||
Args:
|
||||
messages: List of messages (may be in Claude format from agent)
|
||||
tools: List of tool definitions (may be in Claude format from agent)
|
||||
stream: Whether to use streaming
|
||||
**kwargs: Additional parameters (max_tokens, temperature, system, model, etc.)
|
||||
|
||||
Returns:
|
||||
Generator yielding OpenAI-format chunks (for streaming)
|
||||
"""
|
||||
try:
|
||||
# Convert messages from Claude format to OpenAI format
|
||||
converted_messages = self._convert_messages_to_openai_format(messages)
|
||||
|
||||
# Inject system prompt if provided
|
||||
system_prompt = kwargs.pop("system", None)
|
||||
if system_prompt:
|
||||
if not converted_messages or converted_messages[0].get("role") != "system":
|
||||
converted_messages.insert(0, {"role": "system", "content": system_prompt})
|
||||
else:
|
||||
converted_messages[0] = {"role": "system", "content": system_prompt}
|
||||
|
||||
# Convert tools from Claude format to OpenAI format
|
||||
converted_tools = None
|
||||
if tools:
|
||||
converted_tools = self._convert_tools_to_openai_format(tools)
|
||||
|
||||
# Resolve model / temperature
|
||||
model = kwargs.pop("model", None) or self.args["model"]
|
||||
max_tokens = kwargs.pop("max_tokens", None)
|
||||
# Don't pop temperature, just ignore it - let API use default
|
||||
kwargs.pop("temperature", None)
|
||||
|
||||
# Build request body (omit temperature, let the API use its own default)
|
||||
request_body = {
|
||||
"model": model,
|
||||
"messages": converted_messages,
|
||||
"stream": stream,
|
||||
}
|
||||
if max_tokens is not None:
|
||||
request_body["max_tokens"] = max_tokens
|
||||
|
||||
# Add tools
|
||||
if converted_tools:
|
||||
request_body["tools"] = converted_tools
|
||||
request_body["tool_choice"] = "auto"
|
||||
|
||||
# Explicitly disable thinking to avoid reasoning_content issues
|
||||
# in multi-turn tool calls
|
||||
request_body["thinking"] = {"type": "disabled"}
|
||||
|
||||
logger.debug(f"[DOUBAO] API call: model={model}, "
|
||||
f"tools={len(converted_tools) if converted_tools else 0}, stream={stream}")
|
||||
|
||||
if stream:
|
||||
return self._handle_stream_response(request_body)
|
||||
else:
|
||||
return self._handle_sync_response(request_body)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[DOUBAO] call_with_tools error: {e}")
|
||||
import traceback
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
def error_generator():
|
||||
yield {"error": True, "message": str(e), "status_code": 500}
|
||||
return error_generator()
|
||||
|
||||
# -------------------- streaming --------------------
|
||||
|
||||
def _handle_stream_response(self, request_body: dict):
|
||||
"""Handle streaming SSE response from Doubao API and yield OpenAI-format chunks."""
|
||||
try:
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {self.api_key}"
|
||||
}
|
||||
|
||||
url = f"{self.base_url}/chat/completions"
|
||||
response = requests.post(url, headers=headers, json=request_body, stream=True, timeout=120)
|
||||
|
||||
if response.status_code != 200:
|
||||
error_msg = response.text
|
||||
logger.error(f"[DOUBAO] API error: status={response.status_code}, msg={error_msg}")
|
||||
yield {"error": True, "message": error_msg, "status_code": response.status_code}
|
||||
return
|
||||
|
||||
current_tool_calls = {}
|
||||
finish_reason = None
|
||||
|
||||
for line in response.iter_lines():
|
||||
if not line:
|
||||
continue
|
||||
|
||||
line = line.decode("utf-8")
|
||||
if not line.startswith("data: "):
|
||||
continue
|
||||
|
||||
data_str = line[6:] # Remove "data: " prefix
|
||||
if data_str.strip() == "[DONE]":
|
||||
break
|
||||
|
||||
try:
|
||||
chunk = json.loads(data_str)
|
||||
except json.JSONDecodeError as e:
|
||||
logger.warning(f"[DOUBAO] JSON decode error: {e}, data: {data_str[:200]}")
|
||||
continue
|
||||
|
||||
# Check for error in chunk
|
||||
if chunk.get("error"):
|
||||
error_data = chunk["error"]
|
||||
error_msg = error_data.get("message", "Unknown error") if isinstance(error_data, dict) else str(error_data)
|
||||
logger.error(f"[DOUBAO] stream error: {error_msg}")
|
||||
yield {"error": True, "message": error_msg, "status_code": 500}
|
||||
return
|
||||
|
||||
if not chunk.get("choices"):
|
||||
continue
|
||||
|
||||
choice = chunk["choices"][0]
|
||||
delta = choice.get("delta", {})
|
||||
|
||||
# Skip reasoning_content (thinking) - don't log or forward
|
||||
if delta.get("reasoning_content"):
|
||||
continue
|
||||
|
||||
# Handle text content
|
||||
if "content" in delta and delta["content"]:
|
||||
yield {
|
||||
"choices": [{
|
||||
"index": 0,
|
||||
"delta": {
|
||||
"role": "assistant",
|
||||
"content": delta["content"]
|
||||
}
|
||||
}]
|
||||
}
|
||||
|
||||
# Handle tool_calls (streamed incrementally)
|
||||
if "tool_calls" in delta:
|
||||
for tool_call_chunk in delta["tool_calls"]:
|
||||
index = tool_call_chunk.get("index", 0)
|
||||
if index not in current_tool_calls:
|
||||
current_tool_calls[index] = {
|
||||
"id": tool_call_chunk.get("id", ""),
|
||||
"type": "tool_use",
|
||||
"name": tool_call_chunk.get("function", {}).get("name", ""),
|
||||
"input": ""
|
||||
}
|
||||
|
||||
# Accumulate arguments
|
||||
if "function" in tool_call_chunk and "arguments" in tool_call_chunk["function"]:
|
||||
current_tool_calls[index]["input"] += tool_call_chunk["function"]["arguments"]
|
||||
|
||||
# Yield OpenAI-format tool call delta
|
||||
yield {
|
||||
"choices": [{
|
||||
"index": 0,
|
||||
"delta": {
|
||||
"tool_calls": [tool_call_chunk]
|
||||
}
|
||||
}]
|
||||
}
|
||||
|
||||
# Capture finish_reason
|
||||
if choice.get("finish_reason"):
|
||||
finish_reason = choice["finish_reason"]
|
||||
|
||||
# Final chunk with finish_reason
|
||||
yield {
|
||||
"choices": [{
|
||||
"index": 0,
|
||||
"delta": {},
|
||||
"finish_reason": finish_reason
|
||||
}]
|
||||
}
|
||||
|
||||
except requests.exceptions.Timeout:
|
||||
logger.error("[DOUBAO] Request timeout")
|
||||
yield {"error": True, "message": "Request timeout", "status_code": 500}
|
||||
except Exception as e:
|
||||
logger.error(f"[DOUBAO] stream response error: {e}")
|
||||
import traceback
|
||||
logger.error(traceback.format_exc())
|
||||
yield {"error": True, "message": str(e), "status_code": 500}
|
||||
|
||||
# -------------------- sync --------------------
|
||||
|
||||
def _handle_sync_response(self, request_body: dict):
|
||||
"""Handle synchronous API response and yield a single result dict."""
|
||||
try:
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {self.api_key}"
|
||||
}
|
||||
|
||||
request_body.pop("stream", None)
|
||||
url = f"{self.base_url}/chat/completions"
|
||||
response = requests.post(url, headers=headers, json=request_body, timeout=120)
|
||||
|
||||
if response.status_code != 200:
|
||||
error_msg = response.text
|
||||
logger.error(f"[DOUBAO] API error: status={response.status_code}, msg={error_msg}")
|
||||
yield {"error": True, "message": error_msg, "status_code": response.status_code}
|
||||
return
|
||||
|
||||
result = response.json()
|
||||
message = result["choices"][0]["message"]
|
||||
finish_reason = result["choices"][0]["finish_reason"]
|
||||
|
||||
response_data = {"role": "assistant", "content": []}
|
||||
|
||||
# Add text content
|
||||
if message.get("content"):
|
||||
response_data["content"].append({
|
||||
"type": "text",
|
||||
"text": message["content"]
|
||||
})
|
||||
|
||||
# Add tool calls
|
||||
if message.get("tool_calls"):
|
||||
for tool_call in message["tool_calls"]:
|
||||
response_data["content"].append({
|
||||
"type": "tool_use",
|
||||
"id": tool_call["id"],
|
||||
"name": tool_call["function"]["name"],
|
||||
"input": json.loads(tool_call["function"]["arguments"])
|
||||
})
|
||||
|
||||
# Map finish_reason
|
||||
if finish_reason == "tool_calls":
|
||||
response_data["stop_reason"] = "tool_use"
|
||||
elif finish_reason == "stop":
|
||||
response_data["stop_reason"] = "end_turn"
|
||||
else:
|
||||
response_data["stop_reason"] = finish_reason
|
||||
|
||||
yield response_data
|
||||
|
||||
except requests.exceptions.Timeout:
|
||||
logger.error("[DOUBAO] Request timeout")
|
||||
yield {"error": True, "message": "Request timeout", "status_code": 500}
|
||||
except Exception as e:
|
||||
logger.error(f"[DOUBAO] sync response error: {e}")
|
||||
import traceback
|
||||
logger.error(traceback.format_exc())
|
||||
yield {"error": True, "message": str(e), "status_code": 500}
|
||||
|
||||
# -------------------- format conversion --------------------
|
||||
|
||||
def _convert_messages_to_openai_format(self, messages):
|
||||
"""
|
||||
Convert messages from Claude format to OpenAI format.
|
||||
|
||||
Claude format uses content blocks: tool_use / tool_result / text
|
||||
OpenAI format uses tool_calls in assistant, role=tool for results
|
||||
"""
|
||||
if not messages:
|
||||
return []
|
||||
|
||||
converted = []
|
||||
|
||||
for msg in messages:
|
||||
role = msg.get("role")
|
||||
content = msg.get("content")
|
||||
|
||||
# Already a simple string - pass through
|
||||
if isinstance(content, str):
|
||||
converted.append(msg)
|
||||
continue
|
||||
|
||||
if not isinstance(content, list):
|
||||
converted.append(msg)
|
||||
continue
|
||||
|
||||
if role == "user":
|
||||
text_parts = []
|
||||
tool_results = []
|
||||
|
||||
for block in content:
|
||||
if not isinstance(block, dict):
|
||||
continue
|
||||
if block.get("type") == "text":
|
||||
text_parts.append(block.get("text", ""))
|
||||
elif block.get("type") == "tool_result":
|
||||
tool_call_id = block.get("tool_use_id") or ""
|
||||
result_content = block.get("content", "")
|
||||
if not isinstance(result_content, str):
|
||||
result_content = json.dumps(result_content, ensure_ascii=False)
|
||||
tool_results.append({
|
||||
"role": "tool",
|
||||
"tool_call_id": tool_call_id,
|
||||
"content": result_content
|
||||
})
|
||||
|
||||
# Tool results first (must come right after assistant with tool_calls)
|
||||
for tr in tool_results:
|
||||
converted.append(tr)
|
||||
|
||||
if text_parts:
|
||||
converted.append({"role": "user", "content": "\n".join(text_parts)})
|
||||
|
||||
elif role == "assistant":
|
||||
openai_msg = {"role": "assistant"}
|
||||
text_parts = []
|
||||
tool_calls = []
|
||||
|
||||
for block in content:
|
||||
if not isinstance(block, dict):
|
||||
continue
|
||||
if block.get("type") == "text":
|
||||
text_parts.append(block.get("text", ""))
|
||||
elif block.get("type") == "tool_use":
|
||||
tool_calls.append({
|
||||
"id": block.get("id"),
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": block.get("name"),
|
||||
"arguments": json.dumps(block.get("input", {}))
|
||||
}
|
||||
})
|
||||
|
||||
if text_parts:
|
||||
openai_msg["content"] = "\n".join(text_parts)
|
||||
elif not tool_calls:
|
||||
openai_msg["content"] = ""
|
||||
|
||||
if tool_calls:
|
||||
openai_msg["tool_calls"] = tool_calls
|
||||
if not text_parts:
|
||||
openai_msg["content"] = None
|
||||
|
||||
converted.append(openai_msg)
|
||||
else:
|
||||
converted.append(msg)
|
||||
|
||||
return converted
|
||||
|
||||
def _convert_tools_to_openai_format(self, tools):
|
||||
"""
|
||||
Convert tools from Claude format to OpenAI format.
|
||||
|
||||
Claude: {name, description, input_schema}
|
||||
OpenAI: {type: "function", function: {name, description, parameters}}
|
||||
"""
|
||||
if not tools:
|
||||
return None
|
||||
|
||||
converted = []
|
||||
for tool in tools:
|
||||
# Already in OpenAI format
|
||||
if "type" in tool and tool["type"] == "function":
|
||||
converted.append(tool)
|
||||
else:
|
||||
converted.append({
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool.get("name"),
|
||||
"description": tool.get("description"),
|
||||
"parameters": tool.get("input_schema", {})
|
||||
}
|
||||
})
|
||||
|
||||
return converted
|
||||
51
models/doubao/doubao_session.py
Normal file
51
models/doubao/doubao_session.py
Normal file
@@ -0,0 +1,51 @@
|
||||
from models.session_manager import Session
|
||||
from common.log import logger
|
||||
|
||||
|
||||
class DoubaoSession(Session):
|
||||
def __init__(self, session_id, system_prompt=None, model="doubao-seed-2-0-pro-260215"):
|
||||
super().__init__(session_id, system_prompt)
|
||||
self.model = model
|
||||
self.reset()
|
||||
|
||||
def discard_exceeding(self, max_tokens, cur_tokens=None):
|
||||
precise = True
|
||||
try:
|
||||
cur_tokens = self.calc_tokens()
|
||||
except Exception as e:
|
||||
precise = False
|
||||
if cur_tokens is None:
|
||||
raise e
|
||||
logger.debug("Exception when counting tokens precisely for query: {}".format(e))
|
||||
while cur_tokens > max_tokens:
|
||||
if len(self.messages) > 2:
|
||||
self.messages.pop(1)
|
||||
elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant":
|
||||
self.messages.pop(1)
|
||||
if precise:
|
||||
cur_tokens = self.calc_tokens()
|
||||
else:
|
||||
cur_tokens = cur_tokens - max_tokens
|
||||
break
|
||||
elif len(self.messages) == 2 and self.messages[1]["role"] == "user":
|
||||
logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens))
|
||||
break
|
||||
else:
|
||||
logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(
|
||||
max_tokens, cur_tokens, len(self.messages)))
|
||||
break
|
||||
if precise:
|
||||
cur_tokens = self.calc_tokens()
|
||||
else:
|
||||
cur_tokens = cur_tokens - max_tokens
|
||||
return cur_tokens
|
||||
|
||||
def calc_tokens(self):
|
||||
return num_tokens_from_messages(self.messages, self.model)
|
||||
|
||||
|
||||
def num_tokens_from_messages(messages, model):
|
||||
tokens = 0
|
||||
for msg in messages:
|
||||
tokens += len(msg["content"])
|
||||
return tokens
|
||||
Reference in New Issue
Block a user