mirror of
https://github.com/zhayujie/chatgpt-on-wechat.git
synced 2026-02-17 08:28:49 +08:00
fix: memory and path bug
This commit is contained in:
@@ -117,7 +117,7 @@ class MemoryFlushManager:
|
||||
return user_dir / "MEMORY.md"
|
||||
else:
|
||||
# Return workspace root MEMORY.md
|
||||
return Path(self.workspace_root) / "MEMORY.md"
|
||||
return Path(self.workspace_dir) / "MEMORY.md"
|
||||
|
||||
def create_flush_prompt(self) -> str:
|
||||
"""
|
||||
@@ -214,7 +214,7 @@ def create_memory_files_if_needed(workspace_dir: Path, user_id: Optional[str] =
|
||||
user_dir.mkdir(parents=True, exist_ok=True)
|
||||
main_memory = user_dir / "MEMORY.md"
|
||||
else:
|
||||
main_memory = Path(workspace_root) / "MEMORY.md"
|
||||
main_memory = Path(workspace_dir) / "MEMORY.md"
|
||||
|
||||
if not main_memory.exists():
|
||||
# Create empty file or with minimal structure (no obvious "Memory" header)
|
||||
|
||||
@@ -378,7 +378,7 @@ def _build_workspace_section(workspace_dir: str, language: str) -> List[str]:
|
||||
"",
|
||||
"**首次对话**:",
|
||||
"",
|
||||
"如果这是你与用户的首次对话,并且你的人格设定和用户信息还是空白或初始状态:",
|
||||
"如果这是你与用户的首次对话,并你的`SOUL.md`和`USER.md`均是完全空白或初始模板状态的时候才会进行以下流程:",
|
||||
"",
|
||||
"1. **表达初次启动的感觉** - 像是第一次睁开眼看到世界,带着好奇和期待",
|
||||
"2. **简短打招呼后,分点询问三个核心问题**:",
|
||||
@@ -391,8 +391,7 @@ def _build_workspace_section(workspace_dir: str, language: str) -> List[str]:
|
||||
"",
|
||||
"**重要**: ",
|
||||
"- 在所有对话中,无需提及技术细节(如 SOUL.md、USER.md 等文件名,工具名称,配置等),除非用户明确询问。用自然表达如「我已记住」而非「已更新 SOUL.md」",
|
||||
"- 不要问太多其他信息(职业、时区等可以后续自然了解)",
|
||||
"- 保持简洁,避免过度抒情",
|
||||
"- 不要问太多其他信息(职业、时区等可以后续自然了解),只要`SOUL.md`和`USER.md`又被填写过真实内容而不是占位则说明已经不是首次对话了,此时不用进行初始流程",
|
||||
"",
|
||||
]
|
||||
|
||||
|
||||
@@ -305,10 +305,20 @@ class AgentStreamExecutor:
|
||||
for chunk in stream:
|
||||
# Check for errors
|
||||
if isinstance(chunk, dict) and chunk.get("error"):
|
||||
error_msg = chunk.get("message", "Unknown error")
|
||||
# Extract error message from nested structure
|
||||
error_data = chunk.get("error", {})
|
||||
if isinstance(error_data, dict):
|
||||
error_msg = error_data.get("message", chunk.get("message", "Unknown error"))
|
||||
error_code = error_data.get("code", "")
|
||||
else:
|
||||
error_msg = chunk.get("message", str(error_data))
|
||||
error_code = ""
|
||||
|
||||
status_code = chunk.get("status_code", "N/A")
|
||||
logger.error(f"API Error: {error_msg} (Status: {status_code})")
|
||||
logger.error(f"API Error: {error_msg} (Status: {status_code}, Code: {error_code})")
|
||||
logger.error(f"Full error chunk: {chunk}")
|
||||
|
||||
# Raise exception with full error message for retry logic
|
||||
raise Exception(f"{error_msg} (Status: {status_code})")
|
||||
|
||||
# Parse chunk
|
||||
@@ -346,10 +356,11 @@ class AgentStreamExecutor:
|
||||
|
||||
except Exception as e:
|
||||
error_str = str(e).lower()
|
||||
# Check if error is retryable (timeout, connection, rate limit, etc.)
|
||||
# Check if error is retryable (timeout, connection, rate limit, server busy, etc.)
|
||||
is_retryable = any(keyword in error_str for keyword in [
|
||||
'timeout', 'timed out', 'connection', 'network',
|
||||
'rate limit', 'overloaded', 'unavailable', '429', '500', '502', '503', '504'
|
||||
'rate limit', 'overloaded', 'unavailable', 'busy', 'retry',
|
||||
'429', '500', '502', '503', '504', '512'
|
||||
])
|
||||
|
||||
if is_retryable and retry_count < max_retries:
|
||||
|
||||
@@ -23,7 +23,7 @@ class Ls(BaseTool):
|
||||
"properties": {
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": "Directory to list (default: current directory)"
|
||||
"description": "Directory to list. IMPORTANT: Relative paths are based on workspace directory. To access directories outside workspace, use absolute paths starting with ~ or /."
|
||||
},
|
||||
"limit": {
|
||||
"type": "integer",
|
||||
@@ -56,7 +56,7 @@ class Ls(BaseTool):
|
||||
return ToolResult.fail(
|
||||
f"Error: Path not found: {path}\n"
|
||||
f"Resolved to: {absolute_path}\n"
|
||||
f"Hint: If accessing files outside workspace ({self.cwd}), use absolute path like ~/{path} or /full/path/{path}"
|
||||
f"Hint: Relative paths are based on workspace ({self.cwd}). For files outside workspace, use absolute paths."
|
||||
)
|
||||
return ToolResult.fail(f"Error: Path not found: {path}")
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ class Read(BaseTool):
|
||||
"properties": {
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": "Path to the file to read (relative or absolute)"
|
||||
"description": "Path to the file to read. IMPORTANT: Relative paths are based on workspace directory. To access files outside workspace, use absolute paths starting with ~ or /."
|
||||
},
|
||||
"offset": {
|
||||
"type": "integer",
|
||||
@@ -68,7 +68,7 @@ class Read(BaseTool):
|
||||
return ToolResult.fail(
|
||||
f"Error: File not found: {path}\n"
|
||||
f"Resolved to: {absolute_path}\n"
|
||||
f"Hint: If accessing files outside workspace ({self.cwd}), use absolute path like ~/{path}"
|
||||
f"Hint: Relative paths are based on workspace ({self.cwd}). For files outside workspace, use absolute paths."
|
||||
)
|
||||
return ToolResult.fail(f"Error: File not found: {path}")
|
||||
|
||||
|
||||
@@ -245,8 +245,7 @@ class GoogleGeminiBot(Bot):
|
||||
gen_config = {}
|
||||
if kwargs.get("temperature") is not None:
|
||||
gen_config["temperature"] = kwargs["temperature"]
|
||||
if kwargs.get("max_tokens"):
|
||||
gen_config["maxOutputTokens"] = kwargs["max_tokens"]
|
||||
|
||||
if gen_config:
|
||||
payload["generationConfig"] = gen_config
|
||||
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
import re
|
||||
import time
|
||||
import requests
|
||||
import json
|
||||
import config
|
||||
from bot.bot import Bot
|
||||
from bot.openai_compatible_bot import OpenAICompatibleBot
|
||||
@@ -463,7 +464,7 @@ class LinkAISessionManager(SessionManager):
|
||||
session.add_query(query)
|
||||
session.add_reply(reply)
|
||||
try:
|
||||
max_tokens = conf().get("conversation_max_tokens", 2500)
|
||||
max_tokens = conf().get("conversation_max_tokens", 8000)
|
||||
tokens_cnt = session.discard_exceeding(max_tokens, total_tokens)
|
||||
logger.debug(f"[LinkAI] chat history, before tokens={total_tokens}, now tokens={tokens_cnt}")
|
||||
except Exception as e:
|
||||
@@ -504,6 +505,31 @@ def _linkai_call_with_tools(self, messages, tools=None, stream=False, **kwargs):
|
||||
Formatted response in OpenAI format or generator for streaming
|
||||
"""
|
||||
try:
|
||||
# Debug logging
|
||||
logger.info(f"[LinkAI] ⭐ LinkAI call_with_tools method called")
|
||||
logger.info(f"[LinkAI] messages count (before conversion): {len(messages) if messages else 0}")
|
||||
|
||||
# Convert messages from Claude format to OpenAI format
|
||||
# This is important because Agent uses Claude format internally
|
||||
messages = self._convert_messages_to_openai_format(messages)
|
||||
logger.info(f"[LinkAI] messages count (after conversion): {len(messages) if messages else 0}")
|
||||
|
||||
# Convert tools from Claude format to OpenAI format
|
||||
if tools:
|
||||
tools = self._convert_tools_to_openai_format(tools)
|
||||
|
||||
# Handle system prompt (OpenAI uses system message, Claude uses separate parameter)
|
||||
system_prompt = kwargs.get('system')
|
||||
if system_prompt:
|
||||
# Add system message at the beginning if not already present
|
||||
if not messages or messages[0].get('role') != 'system':
|
||||
messages = [{"role": "system", "content": system_prompt}] + messages
|
||||
else:
|
||||
# Replace existing system message
|
||||
messages[0] = {"role": "system", "content": system_prompt}
|
||||
|
||||
logger.info(f"[LinkAI] Final messages count: {len(messages)}, tools count: {len(tools) if tools else 0}, stream: {stream}")
|
||||
|
||||
# Build request parameters (LinkAI uses OpenAI-compatible format)
|
||||
body = {
|
||||
"messages": messages,
|
||||
@@ -514,17 +540,7 @@ def _linkai_call_with_tools(self, messages, tools=None, stream=False, **kwargs):
|
||||
"presence_penalty": kwargs.get("presence_penalty", conf().get("presence_penalty", 0.0)),
|
||||
"stream": stream
|
||||
}
|
||||
|
||||
# Add max_tokens if specified
|
||||
if kwargs.get("max_tokens"):
|
||||
body["max_tokens"] = kwargs["max_tokens"]
|
||||
|
||||
# Add app_code if provided
|
||||
app_code = kwargs.get("app_code", conf().get("linkai_app_code"))
|
||||
if app_code:
|
||||
body["app_code"] = app_code
|
||||
|
||||
# Add tools if provided (OpenAI-compatible format)
|
||||
|
||||
if tools:
|
||||
body["tools"] = tools
|
||||
body["tool_choice"] = kwargs.get("tool_choice", "auto")
|
||||
|
||||
@@ -66,14 +66,20 @@ class AgentLLMModel(LLMModel):
|
||||
self.bridge = bridge
|
||||
self.bot_type = bot_type
|
||||
self._bot = None
|
||||
self._use_linkai = conf().get("use_linkai", False) and conf().get("linkai_api_key")
|
||||
|
||||
@property
|
||||
def bot(self):
|
||||
"""Lazy load the bot and enhance it with tool calling if needed"""
|
||||
if self._bot is None:
|
||||
self._bot = self.bridge.get_bot(self.bot_type)
|
||||
# Automatically add tool calling support if not present
|
||||
self._bot = add_openai_compatible_support(self._bot)
|
||||
# If use_linkai is enabled, use LinkAI bot directly
|
||||
if self._use_linkai:
|
||||
logger.info("[AgentBridge] Using LinkAI bot for agent")
|
||||
self._bot = self.bridge.find_chat_bot(const.LINKAI)
|
||||
else:
|
||||
self._bot = self.bridge.get_bot(self.bot_type)
|
||||
# Automatically add tool calling support if not present
|
||||
self._bot = add_openai_compatible_support(self._bot)
|
||||
return self._bot
|
||||
|
||||
def call(self, request: LLMRequest):
|
||||
@@ -88,11 +94,18 @@ class AgentLLMModel(LLMModel):
|
||||
kwargs = {
|
||||
'messages': request.messages,
|
||||
'tools': getattr(request, 'tools', None),
|
||||
'stream': False
|
||||
'stream': False,
|
||||
'model': self.model # Pass model parameter
|
||||
}
|
||||
# Only pass max_tokens if it's explicitly set
|
||||
if request.max_tokens is not None:
|
||||
kwargs['max_tokens'] = request.max_tokens
|
||||
|
||||
# Extract system prompt if present
|
||||
system_prompt = getattr(request, 'system', None)
|
||||
if system_prompt:
|
||||
kwargs['system'] = system_prompt
|
||||
|
||||
response = self.bot.call_with_tools(**kwargs)
|
||||
return self._format_response(response)
|
||||
else:
|
||||
@@ -122,7 +135,8 @@ class AgentLLMModel(LLMModel):
|
||||
'messages': request.messages,
|
||||
'tools': getattr(request, 'tools', None),
|
||||
'stream': True,
|
||||
'max_tokens': max_tokens
|
||||
'max_tokens': max_tokens,
|
||||
'model': self.model # Pass model parameter
|
||||
}
|
||||
|
||||
# Add system prompt if present
|
||||
|
||||
Reference in New Issue
Block a user