Add support for ModelScope API

This commit is contained in:
yanrk123
2025-03-11 11:12:57 +08:00
parent 436c038a2f
commit 3e185dbbfe
8 changed files with 219 additions and 4 deletions

View File

@@ -68,5 +68,9 @@ def create_bot(bot_type):
from bot.minimax.minimax_bot import MinimaxBot
return MinimaxBot()
elif bot_type == const.MODELSCOPE:
from bot.modelscope.modelscope_bot import ModelScopeBot
return ModelScopeBot()
raise RuntimeError

View File

@@ -0,0 +1,152 @@
# encoding:utf-8
import time
import json
import openai
import openai.error
from bot.bot import Bot
from bot.session_manager import SessionManager
from bridge.context import ContextType
from bridge.reply import Reply, ReplyType
from common.log import logger
from config import conf, load_config
from .modelscope_session import ModelScopeSession
import requests
# ModelScope对话模型API
class ModelScopeBot(Bot):
def __init__(self):
super().__init__()
self.sessions = SessionManager(ModelScopeSession, model=conf().get("model") or "Qwen/Qwen2.5-7B-Instruct")
model = conf().get("model") or "Qwen/Qwen2.5-7B-Instruct"
if model == "modelscope":
model = "Qwen/Qwen2.5-7B-Instruct"
self.args = {
"model": model, # 对话模型的名称
"temperature": conf().get("temperature", 0.3), # 如果设置,值域须为 [0, 1] 我们推荐 0.3,以达到较合适的效果。
"top_p": conf().get("top_p", 1.0), # 使用默认值
}
self.api_key = conf().get("modelscope_api_key")
self.base_url = conf().get("modelscope_base_url", "https://api-inference.modelscope.cn/v1/chat/completions")
"""
需要获取MOdelScope支持API-inference的模型名称列表请到魔搭社区官网模型中心查看 https://modelscope.cn/models?filter=inference_type&page=1。
或者使用命令 curl https://api-inference.modelscope.cn/v1/models 对模型列表和ID进行获取。
获取ModelScope的免费API Key请到魔搭社区官网用户中心查看获取方式 https://modelscope.cn/docs/model-service/API-Inference/intro。
"""
def reply(self, query, context=None):
# acquire reply content
if context.type == ContextType.TEXT:
logger.info("[MODELSCOPE_AI] query={}".format(query))
session_id = context["session_id"]
reply = None
clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"])
if query in clear_memory_commands:
self.sessions.clear_session(session_id)
reply = Reply(ReplyType.INFO, "记忆已清除")
elif query == "#清除所有":
self.sessions.clear_all_session()
reply = Reply(ReplyType.INFO, "所有人记忆已清除")
elif query == "#更新配置":
load_config()
reply = Reply(ReplyType.INFO, "配置已更新")
if reply:
return reply
session = self.sessions.session_query(query, session_id)
logger.debug("[MODELSCOPE_AI] session query={}".format(session.messages))
model = context.get("modelscope_model")
new_args = self.args.copy()
if model:
new_args["model"] = model
# if context.get('stream'):
# # reply in stream
# return self.reply_text_stream(query, new_query, session_id)
reply_content = self.reply_text(session, args=new_args)
logger.debug(
"[MODELSCOPE_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(
session.messages,
session_id,
reply_content["content"],
reply_content["completion_tokens"],
)
)
if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0:
reply = Reply(ReplyType.ERROR, reply_content["content"])
elif reply_content["completion_tokens"] > 0:
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
reply = Reply(ReplyType.TEXT, reply_content["content"])
else:
reply = Reply(ReplyType.ERROR, reply_content["content"])
logger.debug("[MODELSCOPE_AI] reply {} used 0 tokens.".format(reply_content))
return reply
else:
reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type))
return reply
def reply_text(self, session: ModelScopeSession, args=None, retry_count=0) -> dict:
"""
call openai's ChatCompletion to get the answer
:param session: a conversation session
:param session_id: session id
:param retry_count: retry count
:return: {}
"""
try:
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer " + self.api_key
}
body = args
body["messages"] = session.messages
# logger.debug("[MODELSCOPE_AI] response={}".format(response))
# logger.info("[MODELSCOPE_AI] reply={}, total_tokens={}".format(response.choices[0]['message']['content'], response["usage"]["total_tokens"]))
res = requests.post(
self.base_url,
headers=headers,
data=json.dumps(body)
)
if res.status_code == 200:
response = res.json()
return {
"total_tokens": response["usage"]["total_tokens"],
"completion_tokens": response["usage"]["completion_tokens"],
"content": response["choices"][0]["message"]["content"]
}
else:
response = res.json()
error = response.get("error")
logger.error(f"[MODELSCOPE_AI] chat failed, status_code={res.status_code}, "
f"msg={error.get('message')}, type={error.get('type')}")
result = {"completion_tokens": 0, "content": "提问太快啦,请休息一下再问我吧"}
need_retry = False
if res.status_code >= 500:
# server error, need retry
logger.warn(f"[MODELSCOPE_AI] do retry, times={retry_count}")
need_retry = retry_count < 2
elif res.status_code == 401:
result["content"] = "授权失败请检查API Key是否正确"
elif res.status_code == 429:
result["content"] = "请求过于频繁,请稍后再试"
need_retry = retry_count < 2
else:
need_retry = False
if need_retry:
time.sleep(3)
return self.reply_text(session, args, retry_count + 1)
else:
return result
except Exception as e:
logger.exception(e)
need_retry = retry_count < 2
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
if need_retry:
return self.reply_text(session, args, retry_count + 1)
else:
return result

View File

@@ -0,0 +1,51 @@
from bot.session_manager import Session
from common.log import logger
class ModelScopeSession(Session):
def __init__(self, session_id, system_prompt=None, model="Qwen/Qwen2.5-7B-Instruct"):
super().__init__(session_id, system_prompt)
self.model = model
self.reset()
def discard_exceeding(self, max_tokens, cur_tokens=None):
precise = True
try:
cur_tokens = self.calc_tokens()
except Exception as e:
precise = False
if cur_tokens is None:
raise e
logger.debug("Exception when counting tokens precisely for query: {}".format(e))
while cur_tokens > max_tokens:
if len(self.messages) > 2:
self.messages.pop(1)
elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant":
self.messages.pop(1)
if precise:
cur_tokens = self.calc_tokens()
else:
cur_tokens = cur_tokens - max_tokens
break
elif len(self.messages) == 2 and self.messages[1]["role"] == "user":
logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens))
break
else:
logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(max_tokens, cur_tokens,
len(self.messages)))
break
if precise:
cur_tokens = self.calc_tokens()
else:
cur_tokens = cur_tokens - max_tokens
return cur_tokens
def calc_tokens(self):
return num_tokens_from_messages(self.messages, self.model)
def num_tokens_from_messages(messages, model):
tokens = 0
for msg in messages:
tokens += len(msg["content"])
return tokens

View File

@@ -49,6 +49,9 @@ class Bridge(object):
if model_type in [const.MOONSHOT, "moonshot-v1-8k", "moonshot-v1-32k", "moonshot-v1-128k"]:
self.btype["chat"] = const.MOONSHOT
if model_type in [const.MODELSCOPE,]:
self.btype["chat"] = const.MODELSCOPE
if model_type in ["abab6.5-chat"]:
self.btype["chat"] = const.MiniMax

View File

@@ -15,7 +15,7 @@ GEMINI = "gemini" # gemini-1.0-pro
ZHIPU_AI = "glm-4"
MOONSHOT = "moonshot"
MiniMax = "minimax"
MODELSCOPE = "Qwen/Qwen2.5-7B-Instruct"
# model
CLAUDE3 = "claude-3-opus-20240229"
@@ -97,7 +97,8 @@ MODEL_LIST = [
"moonshot-v1-8k", "moonshot-v1-32k", "moonshot-v1-128k",
QWEN, QWEN_TURBO, QWEN_PLUS, QWEN_MAX,
LINKAI_35, LINKAI_4_TURBO, LINKAI_4o,
DEEPSEEK_CHAT, DEEPSEEK_REASONER
DEEPSEEK_CHAT, DEEPSEEK_REASONER,
MODELSCOPE
]
MODEL_LIST = MODEL_LIST + GITEE_AI_MODEL_LIST

View File

@@ -171,6 +171,9 @@ available_setting = {
"zhipu_ai_api_base": "https://open.bigmodel.cn/api/paas/v4",
"moonshot_api_key": "",
"moonshot_base_url": "https://api.moonshot.cn/v1/chat/completions",
#魔搭社区 平台配置
"modelscope_api_key": "",
"modelscope_base_url": "https://api-inference.modelscope.cn/v1/chat/completions",
# LinkAI平台配置
"use_linkai": False,
"linkai_api_key": "",

View File

@@ -339,7 +339,8 @@ class Godcmd(Plugin):
ok, result = True, "配置已重载"
elif cmd == "resetall":
if bottype in [const.OPEN_AI, const.CHATGPT, const.CHATGPTONAZURE, const.LINKAI,
const.BAIDU, const.XUNFEI, const.QWEN, const.GEMINI, const.ZHIPU_AI, const.MOONSHOT]:
const.BAIDU, const.XUNFEI, const.QWEN, const.GEMINI, const.ZHIPU_AI, const.MOONSHOT,
const.MODELSCOPE]:
channel.cancel_all_session()
bot.sessions.clear_all_session()
ok, result = True, "重置所有会话成功"

View File

@@ -99,7 +99,7 @@ class Role(Plugin):
if e_context["context"].type != ContextType.TEXT:
return
btype = Bridge().get_bot_type("chat")
if btype not in [const.OPEN_AI, const.CHATGPT, const.CHATGPTONAZURE, const.QWEN_DASHSCOPE, const.XUNFEI, const.BAIDU, const.ZHIPU_AI, const.MOONSHOT, const.MiniMax, const.LINKAI]:
if btype not in [const.OPEN_AI, const.CHATGPT, const.CHATGPTONAZURE, const.QWEN_DASHSCOPE, const.XUNFEI, const.BAIDU, const.ZHIPU_AI, const.MOONSHOT, const.MiniMax, const.LINKAI,const.MODELSCOPE]:
logger.debug(f'不支持的bot: {btype}')
return
bot = Bridge().get_bot("chat")