mirror of
https://github.com/zhayujie/bot-on-anything.git
synced 2026-01-19 01:21:06 +08:00
feat: add wechat company service account
This commit is contained in:
152
README.md
152
README.md
@@ -5,21 +5,18 @@
|
||||
**模型:**
|
||||
|
||||
- [x] ChatGPT
|
||||
- ...
|
||||
|
||||
**应用:**
|
||||
|
||||
- [ ] 终端
|
||||
- [ ] Web
|
||||
- [x] 个人微信
|
||||
- [x] 公众号
|
||||
- [x] 公众号 (个人/企业)
|
||||
- [ ] 企业微信
|
||||
- [ ] Telegram
|
||||
- [ ] QQ
|
||||
- [ ] 钉钉
|
||||
- ...
|
||||
|
||||
|
||||
- [ ] 飞书
|
||||
|
||||
# 快速开始
|
||||
|
||||
@@ -39,24 +36,159 @@ cd bot-on-anything/
|
||||
|
||||
### 2.配置说明
|
||||
|
||||
核心配置文件为 `config.json`,
|
||||
核心配置文件为 `config.json`,项目中提供了模板文件 `config-template.json` ,可以从模板复制生成最终生效的 `config.json` 文件:
|
||||
|
||||
```bash
|
||||
cp config-template.json config.json
|
||||
```
|
||||
|
||||
配置文件结构如下:
|
||||
|
||||
```bash
|
||||
{
|
||||
"model": {
|
||||
"type" : "openai", # 选用的算法模型
|
||||
"openai": {
|
||||
# openAI配置
|
||||
}
|
||||
},
|
||||
"channel": {
|
||||
"type": "wechat_mp", # 需要接入的应用
|
||||
"wechat": {
|
||||
# 个人微信配置
|
||||
},
|
||||
"wechat_mp": {
|
||||
# 公众号配置
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
配置文件在最外层分成 `model` 和 `channel` 两部分,model 部分为模型配置,其中的 `type` 指定了选用哪个模型;`channel` 部分包含了应用渠道的配置,`type` 字段指定了接入哪个应用,同时下方对应的配置块也会生效。
|
||||
|
||||
在使用时只需要更改 `model` 和 `channel` 配置块下的 `type` 字段,即可在任意模型和应用间完成切换,连接不同的通路。下面将依次介绍各个 模型 及 应用 的配置和运行过程。
|
||||
|
||||
|
||||
## 二、选择模型
|
||||
|
||||
### 1.ChatGPT
|
||||
|
||||
#### 1.1 注册 OpenAI 账号
|
||||
|
||||
## 三、选择应用
|
||||
前往 [OpenAI注册页面](https://beta.openai.com/signup) 创建账号,参考这篇 [教程](https://www.cnblogs.com/damugua/p/16969508.html) 可以通过虚拟手机号来接收验证码。创建完账号则前往 [API管理页面](https://beta.openai.com/account/api-keys) 创建一个 API Key 并保存下来,后面需要在项目中配置这个key。
|
||||
|
||||
### 1.微信
|
||||
> 项目中使用的对话模型是 davinci,计费方式是约每 750 字 (包含请求和回复) 消耗 $0.02,图片生成是每张消耗 $0.016,账号创建有免费的 $18 额度,使用完可以更换邮箱重新注册。
|
||||
|
||||
#### 1.2 配置项说明
|
||||
|
||||
```bash
|
||||
{
|
||||
"model": {
|
||||
"type" : "openai",
|
||||
|
||||
"openai": {
|
||||
"api_key": "YOUR API KEY",
|
||||
"conversation_max_tokens": 1000,
|
||||
"character_desc": "你是ChatGPT, 一个由OpenAI训练的大型语言模型, 你旨在回答并解决人们的任何问题,并且可以使用多种语言与人交流。"
|
||||
}
|
||||
}
|
||||
```
|
||||
+ `api_key`:填入上面注册账号时创建的 `OpenAI API KEY`
|
||||
+ `conversation_max_tokens`:表示能够记忆的上下文最大字数(一问一答为一组对话,如果累积的对话字数超出限制,就会优先移除最早的一组对话)
|
||||
+ `character_desc` 配置中保存着你对机器人说的一段话,他会记住这段话并作为他的设定,你可以为他定制任何人格
|
||||
|
||||
|
||||
### 2.公众号
|
||||
## 三、运行应用
|
||||
|
||||
### 1.个人微信
|
||||
|
||||
与项目 [chatgpt-on-wechat](https://github.com/zhayujie/chatgpt-on-wechat) 的使用方式相同,目前接入个人微信可能导致账号被限制,暂时不建议使用。
|
||||
|
||||
配置项说明:
|
||||
|
||||
## 四、运行
|
||||
```bash
|
||||
"channel": {
|
||||
"type": "wechat",
|
||||
|
||||
"single_chat_prefix": ["bot", "@bot"],
|
||||
"single_chat_reply_prefix": "[bot] ",
|
||||
"group_chat_prefix": ["@bot"],
|
||||
"group_name_white_list": ["ChatGPT测试群"],
|
||||
"image_create_prefix": ["画", "看", "找一张"],
|
||||
|
||||
"wechat": {
|
||||
}
|
||||
}
|
||||
```
|
||||
个人微信的配置项放在和 `type` 同级的层次,表示这些为公共配置,会复用于其他应用。配置加载时会优先使用模块内的配置,如果未找到便使用公共配置。
|
||||
|
||||
在项目根目录下执行 `python3 app.py` 即可启动程序,用手机扫码后完成登录,使用详情参考 [chatgpt-on-wechat](https://github.com/zhayujie/chatgpt-on-wechat)。
|
||||
|
||||
### 2.个人订阅号
|
||||
|
||||
#### 2.1 依赖安装
|
||||
|
||||
安装 [werobot](https://github.com/offu/WeRoBot) 依赖:
|
||||
|
||||
```bash
|
||||
pip3 install werobot
|
||||
```
|
||||
|
||||
#### 2.2 配置
|
||||
|
||||
```bash
|
||||
"channel": {
|
||||
"type": "wechat_mp",
|
||||
|
||||
"wechat_mp": {
|
||||
"token": "YOUR TOKEN", # token值
|
||||
"port": "8088" # 程序启动监听的端口
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 2.1 运行程序
|
||||
|
||||
在项目目录下运行 `python3 app.py`,终端显示如下则表示已成功运行:
|
||||
|
||||
```
|
||||
[INFO][2023-02-16 01:39:53][app.py:12] - [INIT] load config: ...
|
||||
[INFO][2023-02-16 01:39:53][wechat_mp_channel.py:25] - [WX_Public] Wechat Public account service start!
|
||||
Bottle v0.12.23 server starting up (using AutoServer())...
|
||||
Listening on http://127.0.0.1:8088/
|
||||
Hit Ctrl-C to quit.
|
||||
```
|
||||
|
||||
#### 2.2 设置公众号回调地址
|
||||
|
||||
在 [微信公众平台](https://mp.weixin.qq.com/) 中进入个人订阅号,启用服务器配置:
|
||||
|
||||

|
||||
|
||||
- 服务器地址 (URL):在浏览器访问该URL需要能访问到服务器上运行的python程序 (默认为8088端口)
|
||||
- 令牌 (Token):需和配置中的token一致
|
||||
|
||||
#### 2.3 使用
|
||||
|
||||
用户关注订阅号后,发送消息即可。
|
||||
|
||||
> 注:用户发送消息后,微信后台会向配置的URL地址推送,但如果5s内未回复就会断开连接,同时重试3次,但往往请求openai接口不止5s。本项目中通过异步和缓存将5s超时限制优化至15s,但超出该时间仍无法正常回复。 同时每次5s连接断开时web框架会报错,待后续优化。
|
||||
|
||||
|
||||
### 3.企业服务号
|
||||
|
||||
在企业服务号中,通过先异步访问openai接口,再通过客服接口主动推送用户的方式,解决了个人订阅号的15s超时问题。
|
||||
|
||||
企业服务号配置只需修改type为`wechat_mp_service`,配置块仍复用 `wechat_mp`,在基础上增加了 `app_id` 和 `app_secret` 两个配置项。
|
||||
|
||||
```bash
|
||||
"channel": {
|
||||
"type": "wechat_mp_service",
|
||||
|
||||
"wechat_mp": {
|
||||
"token": "YOUR TOKEN", # token值
|
||||
"port": "8088", # 程序启动监听的端口
|
||||
"app_id": "YOUR APP ID", # appID
|
||||
"app_secret": "YOUR APP SECRET" # app secret
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
2
app.py
2
app.py
@@ -12,7 +12,7 @@ if __name__ == '__main__':
|
||||
logger.info("[INIT] load config: {}".format(config.conf()))
|
||||
|
||||
# create channel
|
||||
channel = channel_factory.create_channel(config.conf().get("channel"))
|
||||
channel = channel_factory.create_channel(config.conf().get("channel").get("type"))
|
||||
|
||||
# startup channel
|
||||
channel.startup()
|
||||
|
||||
@@ -6,4 +6,4 @@ class Bridge(object):
|
||||
pass
|
||||
|
||||
def fetch_reply_content(self, query, context):
|
||||
return model_factory.create_bot(config.conf().get("model")).reply(query, context)
|
||||
return model_factory.create_bot(config.conf().get("model").get("type")).reply(query, context)
|
||||
|
||||
@@ -14,8 +14,12 @@ def create_channel(channel_type):
|
||||
return WechatChannel()
|
||||
|
||||
elif channel_type == const.WECHAT_MP:
|
||||
from channel.wechat.wechat_mp_channel import WechatPublicAccount
|
||||
return WechatPublicAccount()
|
||||
from channel.wechat.wechat_mp_channel import WechatSubsribeAccount
|
||||
return WechatSubsribeAccount()
|
||||
|
||||
elif channel_type == const.WECHAT_MP_SERVICE:
|
||||
from channel.wechat.wechat_mp_service_channel import WechatServiceAccount
|
||||
return WechatServiceAccount()
|
||||
|
||||
else:
|
||||
raise RuntimeError
|
||||
|
||||
@@ -9,7 +9,8 @@ from itchat.content import *
|
||||
from channel.channel import Channel
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from common.log import logger
|
||||
from config import conf
|
||||
from common import const
|
||||
from config import channel_conf_val, channel_conf
|
||||
import requests
|
||||
import io
|
||||
|
||||
@@ -45,7 +46,7 @@ class WechatChannel(Channel):
|
||||
to_user_id = msg['ToUserName'] # 接收人id
|
||||
other_user_id = msg['User']['UserName'] # 对手方id
|
||||
content = msg['Text']
|
||||
match_prefix = self.check_prefix(content, conf().get('single_chat_prefix'))
|
||||
match_prefix = self.check_prefix(content, channel_conf_val(const.WECHAT, 'single_chat_prefix'))
|
||||
if from_user_id == other_user_id and match_prefix is not None:
|
||||
# 好友向自己发送消息
|
||||
if match_prefix != '':
|
||||
@@ -53,7 +54,7 @@ class WechatChannel(Channel):
|
||||
if len(str_list) == 2:
|
||||
content = str_list[1].strip()
|
||||
|
||||
img_match_prefix = self.check_prefix(content, conf().get('image_create_prefix'))
|
||||
img_match_prefix = self.check_prefix(content, channel_conf_val(const.WECHAT, 'image_create_prefix'))
|
||||
if img_match_prefix:
|
||||
content = content.split(img_match_prefix, 1)[1].strip()
|
||||
thread_pool.submit(self._do_send_img, content, from_user_id)
|
||||
@@ -65,7 +66,7 @@ class WechatChannel(Channel):
|
||||
str_list = content.split(match_prefix, 1)
|
||||
if len(str_list) == 2:
|
||||
content = str_list[1].strip()
|
||||
img_match_prefix = self.check_prefix(content, conf().get('image_create_prefix'))
|
||||
img_match_prefix = self.check_prefix(content, channel_conf_val(const.WECHAT, 'image_create_prefix'))
|
||||
if img_match_prefix:
|
||||
content = content.split(img_match_prefix, 1)[1].strip()
|
||||
thread_pool.submit(self._do_send_img, content, to_user_id)
|
||||
@@ -88,11 +89,11 @@ class WechatChannel(Channel):
|
||||
elif len(content_list) == 2:
|
||||
content = content_list[1]
|
||||
|
||||
config = conf()
|
||||
match_prefix = (msg['IsAt'] and not config.get("group_at_off", False)) or self.check_prefix(origin_content, config.get('group_chat_prefix')) \
|
||||
or self.check_contain(origin_content, config.get('group_chat_keyword'))
|
||||
if ('ALL_GROUP' in config.get('group_name_white_list') or group_name in config.get('group_name_white_list') or self.check_contain(group_name, config.get('group_name_keyword_white_list'))) and match_prefix:
|
||||
img_match_prefix = self.check_prefix(content, conf().get('image_create_prefix'))
|
||||
match_prefix = (msg['IsAt'] and not channel_conf_val(const.WECHAT, "group_at_off", False)) or self.check_prefix(origin_content, channel_conf_val(const.WECHAT, 'group_chat_prefix')) \
|
||||
or self.check_contain(origin_content, channel_conf_val(const.WECHAT, 'group_chat_keyword'))
|
||||
group_white_list = channel_conf_val(const.WECHAT, 'group_name_white_list')
|
||||
if ('ALL_GROUP' in group_white_list or group_name in group_white_list or self.check_contain(group_name, channel_conf_val(const.WECHAT, 'group_name_keyword_white_list'))) and match_prefix:
|
||||
img_match_prefix = self.check_prefix(content, channel_conf_val(const.WECHAT, 'image_create_prefix'))
|
||||
if img_match_prefix:
|
||||
content = content.split(img_match_prefix, 1)[1].strip()
|
||||
thread_pool.submit(self._do_send_img, content, group_id)
|
||||
@@ -111,7 +112,7 @@ class WechatChannel(Channel):
|
||||
context['from_user_id'] = reply_user_id
|
||||
reply_text = super().build_reply_content(query, context)
|
||||
if reply_text:
|
||||
self.send(conf().get("single_chat_reply_prefix") + reply_text, reply_user_id)
|
||||
self.send(channel_conf_val(const.WECHAT, "single_chat_reply_prefix") + reply_text, reply_user_id)
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
|
||||
@@ -146,7 +147,7 @@ class WechatChannel(Channel):
|
||||
reply_text = super().build_reply_content(query, context)
|
||||
if reply_text:
|
||||
reply_text = '@' + msg['ActualNickName'] + ' ' + reply_text.strip()
|
||||
self.send(conf().get("group_chat_reply_prefix", "") + reply_text, msg['User']['UserName'])
|
||||
self.send(channel_conf_val(const.WECHAT, "group_chat_reply_prefix", "") + reply_text, msg['User']['UserName'])
|
||||
|
||||
|
||||
def check_prefix(self, content, prefix_list):
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
import werobot
|
||||
import time
|
||||
import config
|
||||
from config import channel_conf
|
||||
from common import const
|
||||
from common.log import logger
|
||||
from channel.channel import Channel
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
robot = werobot.WeRoBot(token=config.fetch(const.WECHAT_MP).get('token'))
|
||||
robot = werobot.WeRoBot(token=channel_conf(const.WECHAT_MP).get('token'))
|
||||
thread_pool = ThreadPoolExecutor(max_workers=8)
|
||||
cache = {}
|
||||
|
||||
@@ -15,14 +15,15 @@ def hello_world(msg):
|
||||
logger.info('[WX_Public] receive public msg: {}, userId: {}'.format(msg.content, msg.source))
|
||||
key = msg.content + '|' + msg.source
|
||||
if cache.get(key):
|
||||
# request time
|
||||
cache.get(key)['req_times'] += 1
|
||||
return WechatPublicAccount().handle(msg)
|
||||
return WechatSubsribeAccount().handle(msg)
|
||||
|
||||
|
||||
class WechatPublicAccount(Channel):
|
||||
class WechatSubsribeAccount(Channel):
|
||||
def startup(self):
|
||||
logger.info('[WX_Public] Wechat Public account service start!')
|
||||
robot.config['PORT'] = config.fetch(const.WECHAT_MP).get('port')
|
||||
robot.config['PORT'] = channel_conf(const.WECHAT_MP).get('port')
|
||||
robot.run()
|
||||
|
||||
def handle(self, msg, count=0):
|
||||
|
||||
36
channel/wechat/wechat_mp_service_channel.py
Normal file
36
channel/wechat/wechat_mp_service_channel.py
Normal file
@@ -0,0 +1,36 @@
|
||||
import werobot
|
||||
from config import channel_conf
|
||||
from common import const
|
||||
from common.log import logger
|
||||
from channel.channel import Channel
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
robot = werobot.WeRoBot(token=channel_conf(const.WECHAT_MP).get('token'))
|
||||
thread_pool = ThreadPoolExecutor(max_workers=8)
|
||||
|
||||
@robot.text
|
||||
def hello_world(msg):
|
||||
logger.info('[WX_Public] receive public msg: {}, userId: {}'.format(msg.content, msg.source))
|
||||
return WechatServiceAccount().handle(msg)
|
||||
|
||||
|
||||
class WechatServiceAccount(Channel):
|
||||
def startup(self):
|
||||
logger.info('[WX_Public] Wechat Public account service start!')
|
||||
robot.config['PORT'] = channel_conf(const.WECHAT_MP).get('port')
|
||||
robot.config["APP_ID"] = "YOUR APP ID"
|
||||
robot.config["APP_SECRET"] = "YOUR APP SECRET"
|
||||
robot.run()
|
||||
|
||||
def handle(self, msg, count=0):
|
||||
context = {}
|
||||
context['from_user_id'] = msg.source
|
||||
thread_pool.submit(self._do_send, msg.content, context)
|
||||
return "正在思考中..."
|
||||
|
||||
|
||||
def _do_send(self, query, context):
|
||||
reply_text = super().build_reply_content(query, context)
|
||||
logger.info('[WX_Public] reply content: {}'.format(reply_text))
|
||||
client = robot.client
|
||||
client.send_text_message(context['from_user_id'], reply_text)
|
||||
@@ -1,6 +1,7 @@
|
||||
# channel
|
||||
WECHAT = "wechat"
|
||||
WECHAT_MP = "wechat_mp"
|
||||
WECHAT_MP_SERVICE = "wechat_mp_service"
|
||||
|
||||
# model
|
||||
OPEN_AI = "openai"
|
||||
|
||||
@@ -1,23 +1,26 @@
|
||||
{
|
||||
"channel": "wechat",
|
||||
"bot": "openai",
|
||||
|
||||
"openai": {
|
||||
"api_key": "YOUR API KEY",
|
||||
"conversation_max_tokens": 1000,
|
||||
"character_desc": "你是ChatGPT, 一个由OpenAI训练的大型语言模型, 你旨在回答并解决人们的任何问题,并且可以使用多种语言与人交流。"
|
||||
"model": {
|
||||
"type" : "openai",
|
||||
"openai": {
|
||||
"api_key": "YOUR API KEY",
|
||||
"conversation_max_tokens": 1000,
|
||||
"character_desc": "你是ChatGPT, 一个由OpenAI训练的大型语言模型, 你旨在回答并解决人们的任何问题,并且可以使用多种语言与人交流。"
|
||||
}
|
||||
},
|
||||
|
||||
"wechat": {
|
||||
"channel": {
|
||||
"type": "wechat_mp",
|
||||
"single_chat_prefix": ["bot", "@bot"],
|
||||
"single_chat_reply_prefix": "[bot] ",
|
||||
"group_chat_prefix": ["@bot"],
|
||||
"group_name_white_list": ["ALL_GROUP"],
|
||||
"image_create_prefix": ["画", "看", "找一张"]
|
||||
},
|
||||
"group_name_white_list": ["ChatGPT测试群"],
|
||||
"image_create_prefix": ["画", "看", "找一张"],
|
||||
|
||||
"wechat_mp": {
|
||||
"token": "YOUR TOKEN",
|
||||
"port": "8088"
|
||||
"wechat": {
|
||||
},
|
||||
|
||||
"wechat_mp": {
|
||||
"token": "YOUR TOKEN",
|
||||
"port": "8088"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
24
config.py
24
config.py
@@ -28,5 +28,25 @@ def read_file(path):
|
||||
def conf():
|
||||
return config
|
||||
|
||||
def fetch(model):
|
||||
return config.get(model)
|
||||
|
||||
def model_conf(model_type):
|
||||
return config.get('model').get(model_type)
|
||||
|
||||
def model_conf_val(model_type, key):
|
||||
val = config.get('model').get(model_type).get(key)
|
||||
if not val:
|
||||
# common default config
|
||||
return config.get('model').get(key)
|
||||
return val
|
||||
|
||||
|
||||
def channel_conf(channel_type):
|
||||
return config.get('channel').get(channel_type)
|
||||
|
||||
|
||||
def channel_conf_val(channel_type, key, default=None):
|
||||
val = config.get('channel').get(channel_type).get(key)
|
||||
if not val:
|
||||
# common default config
|
||||
return config.get('channel').get(key, default)
|
||||
return val
|
||||
|
||||
BIN
docs/images/wx_mp_config.png
Normal file
BIN
docs/images/wx_mp_config.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 126 KiB |
@@ -1,7 +1,7 @@
|
||||
# encoding:utf-8
|
||||
|
||||
from model.model import Model
|
||||
from config import fetch
|
||||
from config import model_conf
|
||||
from common import const
|
||||
from common.log import logger
|
||||
import openai
|
||||
@@ -12,7 +12,7 @@ user_session = dict()
|
||||
# OpenAI对话模型API (可用)
|
||||
class OpenAIModel(Model):
|
||||
def __init__(self):
|
||||
openai.api_key = fetch(const.OPEN_AI).get('api_key')
|
||||
openai.api_key = model_conf(const.OPEN_AI).get('api_key')
|
||||
|
||||
|
||||
def reply(self, query, context=None):
|
||||
@@ -103,7 +103,7 @@ class Session(object):
|
||||
:param user_id: from user id
|
||||
:return: query content with conversaction
|
||||
'''
|
||||
prompt = fetch(const.OPEN_AI).get("character_desc", "")
|
||||
prompt = model_conf(const.OPEN_AI).get("character_desc", "")
|
||||
if prompt:
|
||||
prompt += "<|endoftext|>\n\n\n"
|
||||
session = user_session.get(user_id, None)
|
||||
@@ -117,7 +117,7 @@ class Session(object):
|
||||
|
||||
@staticmethod
|
||||
def save_session(query, answer, user_id):
|
||||
max_tokens = fetch(const.OPEN_AI).get("conversation_max_tokens")
|
||||
max_tokens = model_conf(const.OPEN_AI).get("conversation_max_tokens")
|
||||
if not max_tokens:
|
||||
# default 3000
|
||||
max_tokens = 1000
|
||||
|
||||
Reference in New Issue
Block a user