重构模型管理和配置加载逻辑,支持多模态和推理模型,优化API密钥管理,改进前端模型选择和版本显示

This commit is contained in:
Zylan
2025-03-22 19:37:42 +08:00
parent 65e828cd26
commit 4736891066
13 changed files with 963 additions and 205 deletions

View File

@@ -1,13 +1,13 @@
from .base import BaseModel
from .claude import ClaudeModel
from .gpt4o import GPT4oModel
from .anthropic import AnthropicModel
from .openai import OpenAIModel
from .deepseek import DeepSeekModel
from .factory import ModelFactory
__all__ = [
'BaseModel',
'ClaudeModel',
'GPT4oModel',
'AnthropicModel',
'OpenAIModel',
'DeepSeekModel',
'ModelFactory'
]

View File

@@ -3,7 +3,7 @@ import requests
from typing import Generator
from .base import BaseModel
class ClaudeModel(BaseModel):
class AnthropicModel(BaseModel):
def get_default_system_prompt(self) -> str:
return """You are an expert at analyzing questions and providing detailed solutions. When presented with an image of a question:
1. First read and understand the question carefully
@@ -168,6 +168,11 @@ class ClaudeModel(BaseModel):
# 获取系统提示词,确保包含语言设置
system_prompt = self.system_prompt
# 根据language参数设置回复语言
language = self.language or '中文'
if not any(phrase in system_prompt for phrase in ['Please respond in', '请用', '使用', '回答']):
system_prompt = f"{system_prompt}\n\n请务必使用{language}回答,无论问题是什么语言。即使在分析图像时也请使用{language}回答。这是最重要的指令。"
payload = {
'model': 'claude-3-7-sonnet-20250219',
'stream': True,
@@ -191,7 +196,7 @@ class ClaudeModel(BaseModel):
},
{
'type': 'text',
'text': "Please analyze this question and provide a detailed solution. If you see multiple questions, focus on solving them one at a time."
'text': "请分析这个问题并提供详细的解决方案。如果你看到多个问题,请逐一解决。请务必使用中文回答。"
}
]
}]

View File

@@ -2,9 +2,10 @@ from abc import ABC, abstractmethod
from typing import Generator, Any
class BaseModel(ABC):
def __init__(self, api_key: str, temperature: float = 0.7, system_prompt: str = None):
def __init__(self, api_key: str, temperature: float = 0.7, system_prompt: str = None, language: str = None):
self.api_key = api_key
self.temperature = temperature
self.language = language
self.system_prompt = system_prompt or self.get_default_system_prompt()
@abstractmethod

View File

@@ -105,9 +105,18 @@ class DeepSeekModel(BaseModel):
client = OpenAI(**client_args)
# 检查系统提示词是否已包含语言设置指令
system_prompt = self.system_prompt
language = self.language or '中文'
if not any(phrase in system_prompt for phrase in ['Please respond in', '请用', '使用', '回答']):
system_prompt = f"{system_prompt}\n\n请务必使用{language}回答,无论问题是什么语言。即使在分析图像时也请使用{language}回答。"
response = client.chat.completions.create(
model=self.get_model_identifier(),
messages=[{
'role': 'system',
'content': system_prompt
}, {
'role': 'user',
'content': f"Here's an image of a question to analyze: data:image/png;base64,{image_data}"
}],

View File

@@ -1,20 +1,102 @@
from typing import Dict, Type
from typing import Dict, Type, Any
import json
import os
import importlib
from .base import BaseModel
from .claude import ClaudeModel
from .gpt4o import GPT4oModel
from .deepseek import DeepSeekModel
from .mathpix import MathpixModel
from .mathpix import MathpixModel # MathpixModel仍然需要直接导入因为它是特殊工具
class ModelFactory:
_models: Dict[str, Type[BaseModel]] = {
'claude-3-7-sonnet-20250219': ClaudeModel,
'gpt-4o-2024-11-20': GPT4oModel,
'deepseek-reasoner': DeepSeekModel,
'mathpix': MathpixModel
}
# 模型基本信息,包含类型和特性
_models: Dict[str, Dict[str, Any]] = {}
_class_map: Dict[str, Type[BaseModel]] = {}
@classmethod
def initialize(cls):
"""从配置文件加载模型信息"""
try:
config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'models.json')
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
# 加载提供商信息和类映射
providers = config.get('providers', {})
for provider_id, provider_info in providers.items():
class_name = provider_info.get('class_name')
if class_name:
# 从当前包动态导入模型类
module = importlib.import_module(f'.{provider_id.lower()}', package=__package__)
cls._class_map[provider_id] = getattr(module, class_name)
# 加载模型信息
for model_id, model_info in config.get('models', {}).items():
provider_id = model_info.get('provider')
if provider_id and provider_id in cls._class_map:
cls._models[model_id] = {
'class': cls._class_map[provider_id],
'is_multimodal': model_info.get('supportsMultimodal', False),
'is_reasoning': model_info.get('isReasoning', False),
'display_name': model_info.get('name', model_id),
'description': model_info.get('description', '')
}
# 添加Mathpix模型特殊工具模型
cls._models['mathpix'] = {
'class': MathpixModel,
'is_multimodal': True,
'is_reasoning': False,
'display_name': 'Mathpix OCR',
'description': '文本提取工具,适用于数学公式和文本',
'is_ocr_only': True
}
print(f"已从配置加载 {len(cls._models)} 个模型")
except Exception as e:
print(f"加载模型配置失败: {str(e)}")
cls._initialize_defaults()
@classmethod
def _initialize_defaults(cls):
"""初始化默认模型(当配置加载失败时)"""
print("使用默认模型配置")
# 导入所有模型类作为备份
from .anthropic import AnthropicModel
from .openai import OpenAIModel
from .deepseek import DeepSeekModel
cls._models = {
'claude-3-7-sonnet-20250219': {
'class': AnthropicModel,
'is_multimodal': True,
'is_reasoning': True,
'display_name': 'Claude 3.7 Sonnet',
'description': '强大的Claude 3.7 Sonnet模型支持图像理解和思考过程'
},
'gpt-4o-2024-11-20': {
'class': OpenAIModel,
'is_multimodal': True,
'is_reasoning': False,
'display_name': 'GPT-4o',
'description': 'OpenAI的GPT-4o模型支持图像理解'
},
'deepseek-reasoner': {
'class': DeepSeekModel,
'is_multimodal': False,
'is_reasoning': True,
'display_name': 'DeepSeek Reasoner',
'description': 'DeepSeek推理模型提供详细思考过程仅支持文本'
},
'mathpix': {
'class': MathpixModel,
'is_multimodal': True,
'is_reasoning': False,
'display_name': 'Mathpix OCR',
'description': '文本提取工具,适用于数学公式和文本',
'is_ocr_only': True
}
}
@classmethod
def create_model(cls, model_name: str, api_key: str, temperature: float = 0.7, system_prompt: str = None) -> BaseModel:
def create_model(cls, model_name: str, api_key: str, temperature: float = 0.7, system_prompt: str = None, language: str = None) -> BaseModel:
"""
Create and return an instance of the specified model.
@@ -23,6 +105,7 @@ class ModelFactory:
api_key: The API key for the model
temperature: Optional temperature parameter for response generation
system_prompt: Optional custom system prompt
language: Optional language preference for responses
Returns:
An instance of the specified model
@@ -30,28 +113,86 @@ class ModelFactory:
Raises:
ValueError: If the model_name is not recognized
"""
model_class = cls._models.get(model_name)
if not model_class:
model_info = cls._models.get(model_name)
if not model_info:
raise ValueError(f"Unknown model: {model_name}")
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt
)
model_class = model_info['class']
# 对于Mathpix模型不传递language参数
if model_name == 'mathpix':
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt
)
else:
# 对于其他模型,传递所有参数
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt,
language=language
)
@classmethod
def get_available_models(cls) -> list[str]:
def get_available_models(cls) -> list[Dict[str, Any]]:
"""Return a list of available models with their information"""
models_info = []
for model_id, info in cls._models.items():
# 跳过仅OCR工具模型
if info.get('is_ocr_only', False):
continue
models_info.append({
'id': model_id,
'display_name': info.get('display_name', model_id),
'description': info.get('description', ''),
'is_multimodal': info.get('is_multimodal', False),
'is_reasoning': info.get('is_reasoning', False)
})
return models_info
@classmethod
def get_model_ids(cls) -> list[str]:
"""Return a list of available model identifiers"""
return list(cls._models.keys())
return [model_id for model_id in cls._models.keys()
if not cls._models[model_id].get('is_ocr_only', False)]
@classmethod
def register_model(cls, model_name: str, model_class: Type[BaseModel]) -> None:
def is_multimodal(cls, model_name: str) -> bool:
"""判断模型是否支持多模态输入"""
return cls._models.get(model_name, {}).get('is_multimodal', False)
@classmethod
def is_reasoning(cls, model_name: str) -> bool:
"""判断模型是否为推理模型"""
return cls._models.get(model_name, {}).get('is_reasoning', False)
@classmethod
def get_model_display_name(cls, model_name: str) -> str:
"""获取模型的显示名称"""
return cls._models.get(model_name, {}).get('display_name', model_name)
@classmethod
def register_model(cls, model_name: str, model_class: Type[BaseModel],
is_multimodal: bool = False, is_reasoning: bool = False,
display_name: str = None, description: str = None) -> None:
"""
Register a new model type with the factory.
Args:
model_name: The identifier for the model
model_class: The model class to register
is_multimodal: Whether the model supports image input
is_reasoning: Whether the model provides reasoning process
display_name: Human-readable name for the model
description: Description of the model
"""
cls._models[model_name] = model_class
cls._models[model_name] = {
'class': model_class,
'is_multimodal': is_multimodal,
'is_reasoning': is_reasoning,
'display_name': display_name or model_name,
'description': description or ''
}

View File

@@ -21,6 +21,7 @@ class MathpixModel(BaseModel):
Raises:
ValueError: If the API key format is invalid
"""
# 只传递必需的参数不传递language参数
super().__init__(api_key, temperature, system_prompt)
try:
self.app_id, self.app_key = api_key.split(':')

View File

@@ -3,7 +3,7 @@ from typing import Generator, Dict, Optional
from openai import OpenAI
from .base import BaseModel
class GPT4oModel(BaseModel):
class OpenAIModel(BaseModel):
def get_default_system_prompt(self) -> str:
return """You are an expert at analyzing questions and providing detailed solutions. When presented with an image of a question:
1. First read and understand the question carefully
@@ -126,11 +126,17 @@ class GPT4oModel(BaseModel):
# Initialize OpenAI client
client = OpenAI(api_key=self.api_key)
# 检查系统提示词是否已包含语言设置指令
system_prompt = self.system_prompt
language = self.language or '中文'
if not any(phrase in system_prompt for phrase in ['Please respond in', '请用', '使用', '回答']):
system_prompt = f"{system_prompt}\n\n请务必使用{language}回答,无论问题是什么语言。即使在分析图像时也请使用{language}回答。"
# Prepare messages with image
messages = [
{
"role": "system",
"content": self.system_prompt
"content": system_prompt
},
{
"role": "user",