Files
Snap-Solver/models/factory.py

199 lines
8.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from typing import Dict, Type, Any
import json
import os
import importlib
from .base import BaseModel
from .mathpix import MathpixModel # MathpixModel仍然需要直接导入因为它是特殊工具
class ModelFactory:
# 模型基本信息,包含类型和特性
_models: Dict[str, Dict[str, Any]] = {}
_class_map: Dict[str, Type[BaseModel]] = {}
@classmethod
def initialize(cls):
"""从配置文件加载模型信息"""
try:
config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'models.json')
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
# 加载提供商信息和类映射
providers = config.get('providers', {})
for provider_id, provider_info in providers.items():
class_name = provider_info.get('class_name')
if class_name:
# 从当前包动态导入模型类
module = importlib.import_module(f'.{provider_id.lower()}', package=__package__)
cls._class_map[provider_id] = getattr(module, class_name)
# 加载模型信息
for model_id, model_info in config.get('models', {}).items():
provider_id = model_info.get('provider')
if provider_id and provider_id in cls._class_map:
cls._models[model_id] = {
'class': cls._class_map[provider_id],
'is_multimodal': model_info.get('supportsMultimodal', False),
'is_reasoning': model_info.get('isReasoning', False),
'display_name': model_info.get('name', model_id),
'description': model_info.get('description', '')
}
# 添加Mathpix模型特殊工具模型
cls._models['mathpix'] = {
'class': MathpixModel,
'is_multimodal': True,
'is_reasoning': False,
'display_name': 'Mathpix OCR',
'description': '文本提取工具,适用于数学公式和文本',
'is_ocr_only': True
}
print(f"已从配置加载 {len(cls._models)} 个模型")
except Exception as e:
print(f"加载模型配置失败: {str(e)}")
cls._initialize_defaults()
@classmethod
def _initialize_defaults(cls):
"""初始化默认模型(当配置加载失败时)"""
print("使用默认模型配置")
# 导入所有模型类作为备份
from .anthropic import AnthropicModel
from .openai import OpenAIModel
from .deepseek import DeepSeekModel
cls._models = {
'claude-3-7-sonnet-20250219': {
'class': AnthropicModel,
'is_multimodal': True,
'is_reasoning': True,
'display_name': 'Claude 3.7 Sonnet',
'description': '强大的Claude 3.7 Sonnet模型支持图像理解和思考过程'
},
'gpt-4o-2024-11-20': {
'class': OpenAIModel,
'is_multimodal': True,
'is_reasoning': False,
'display_name': 'GPT-4o',
'description': 'OpenAI的GPT-4o模型支持图像理解'
},
'deepseek-reasoner': {
'class': DeepSeekModel,
'is_multimodal': False,
'is_reasoning': True,
'display_name': 'DeepSeek Reasoner',
'description': 'DeepSeek推理模型提供详细思考过程仅支持文本'
},
'mathpix': {
'class': MathpixModel,
'is_multimodal': True,
'is_reasoning': False,
'display_name': 'Mathpix OCR',
'description': '文本提取工具,适用于数学公式和文本',
'is_ocr_only': True
}
}
@classmethod
def create_model(cls, model_name: str, api_key: str, temperature: float = 0.7, system_prompt: str = None, language: str = None) -> BaseModel:
"""
Create and return an instance of the specified model.
Args:
model_name: The identifier of the model to create
api_key: The API key for the model
temperature: Optional temperature parameter for response generation
system_prompt: Optional custom system prompt
language: Optional language preference for responses
Returns:
An instance of the specified model
Raises:
ValueError: If the model_name is not recognized
"""
model_info = cls._models.get(model_name)
if not model_info:
raise ValueError(f"Unknown model: {model_name}")
model_class = model_info['class']
# 对于Mathpix模型不传递language参数
if model_name == 'mathpix':
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt
)
else:
# 对于其他模型,传递所有参数
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt,
language=language
)
@classmethod
def get_available_models(cls) -> list[Dict[str, Any]]:
"""Return a list of available models with their information"""
models_info = []
for model_id, info in cls._models.items():
# 跳过仅OCR工具模型
if info.get('is_ocr_only', False):
continue
models_info.append({
'id': model_id,
'display_name': info.get('display_name', model_id),
'description': info.get('description', ''),
'is_multimodal': info.get('is_multimodal', False),
'is_reasoning': info.get('is_reasoning', False)
})
return models_info
@classmethod
def get_model_ids(cls) -> list[str]:
"""Return a list of available model identifiers"""
return [model_id for model_id in cls._models.keys()
if not cls._models[model_id].get('is_ocr_only', False)]
@classmethod
def is_multimodal(cls, model_name: str) -> bool:
"""判断模型是否支持多模态输入"""
return cls._models.get(model_name, {}).get('is_multimodal', False)
@classmethod
def is_reasoning(cls, model_name: str) -> bool:
"""判断模型是否为推理模型"""
return cls._models.get(model_name, {}).get('is_reasoning', False)
@classmethod
def get_model_display_name(cls, model_name: str) -> str:
"""获取模型的显示名称"""
return cls._models.get(model_name, {}).get('display_name', model_name)
@classmethod
def register_model(cls, model_name: str, model_class: Type[BaseModel],
is_multimodal: bool = False, is_reasoning: bool = False,
display_name: str = None, description: str = None) -> None:
"""
Register a new model type with the factory.
Args:
model_name: The identifier for the model
model_class: The model class to register
is_multimodal: Whether the model supports image input
is_reasoning: Whether the model provides reasoning process
display_name: Human-readable name for the model
description: Description of the model
"""
cls._models[model_name] = {
'class': model_class,
'is_multimodal': is_multimodal,
'is_reasoning': is_reasoning,
'display_name': display_name or model_name,
'description': description or ''
}