Files
Podcast-Generator/README.md
hex2077 044f2e1cda docs: 更新README并添加英文版本
- 为README添加英文版本README_EN.md
- 在中文README中添加英文版本链接
- 移除多余的分隔线
- 为示例音频添加HTML音频控件
- 为命令行参数添加默认值
2025-08-06 18:01:04 +08:00

213 lines
8.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# 🎙️ 简易播客生成器 (Simple Podcast Generator)
> 轻松将您的想法,一键生成为生动有趣的多人对话播客!
> [English Version](README_EN.md)
这是一个强大的脚本工具,它利用 **OpenAI API** 的智慧生成富有洞察力的播客脚本,并通过 **TTS (Text-to-Speech)** API服务将冰冷的文字转化为有温度的音频。您只需提供一个主题剩下的交给它
✨ 本项目的播客脚本生成逻辑深受 [SurfSense](https://github.com/MODSetter/SurfSense) 项目的启发,在此向其开源贡献表示衷心感谢!
---
## ✨ 核心功能
* **🤖 AI 驱动脚本**:借助强大的 OpenAI 模型,自动创作高质量、有深度的播客对话脚本。
* **👥 多角色支持**:自由定义多个播客角色(如主持、嘉宾),并为每个角色指定独一无二的 TTS 语音。
* **🔌 灵活的 TTS 集成**:通过简单的 API URL 配置,无缝对接您自建的或第三方的 TTS 服务。
* **🔊 智能音频合并**:自动将各个角色的语音片段精准拼接,合成一个完整的、流畅的播客音频文件 (`.wav` 格式)。
* **⌨️ 便捷的命令行接口**:提供清晰的命令行参数,让您对播客生成过程的每一个环节都了如指掌。
---
## 🛠️ 安装指南
### 📝 前提条件
1. **Python 3.x**
* 请确保您的系统中已安装 Python 3。
2. **FFmpeg**
* 本项目依赖 FFmpeg 进行音频合并。请访问 [FFmpeg 官网](https://ffmpeg.org/download.html) 下载并安装。
* **重要提示**:安装完成后,请确保 `ffmpeg` 命令已添加到您系统的环境变量 (PATH) 中,以便脚本可以正常调用。
### 🐍 Python 依赖
打开您的终端或命令提示符,使用 pip 安装所需的 Python 库:
```bash
pip install requests openai
```
---
## 🚀 快速开始
### 1. 准备输入文件
在运行前,请确保以下文件已准备就绪:
* `input.txt`: 在此文件中输入您想讨论的**播客主题**或核心观点。
* `prompt/prompt-overview.txt`: 用于指导 AI 生成播客**整体大纲**的系统提示。
* `prompt/prompt-podscript.txt`: 用于指导 AI 生成**详细对话脚本**的系统提示。它包含动态占位符(如 `{{numSpeakers}}`, `{{turnPattern}}`),脚本会自动替换。
### 2. 配置 TTS 服务与角色
* `config/` 目录下存放您的 TTS 配置文件(例如 `edge-tts.json`)。该文件定义了 TTS 服务的 API 接口、播客角色 (`podUsers`) 及其对应的语音 (`voices`)。
### 3. 运行脚本
在项目根目录下执行以下命令:
```bash
python podcast_generator.py [可选参数]
```
#### **可选参数**
* `--api-key <YOUR_OPENAI_API_KEY>`: 您的 OpenAI API 密钥。若不提供,将从配置文件或 `OPENAI_API_KEY` 环境变量中读取。
* `--base-url <YOUR_OPENAI_BASE_URL>`: OpenAI API 的代理地址。若不提供,将从配置文件或 `OPENAI_BASE_URL` 环境变量中读取。
* `--model <OPENAI_MODEL_NAME>`: 指定使用的 OpenAI 模型(如 `gpt-4o`, `gpt-4-turbo`)。默认值为 `gpt-3.5-turbo`
* `--threads <NUMBER_OF_THREADS>`: 指定生成音频的并行线程数(默认为 `1`),提高处理速度。
#### **运行示例**
```bash
# 使用 gpt-4o 模型和 4 个线程来生成播客
python podcast_generator.py --api-key sk-xxxxxx --model gpt-4o --threads 4
```
### 4. 自定义 AI 提示词(`custom` 代码块)
为了提供更细致的 AI 指令或添加特定上下文,您可以在 `input.txt` 文件中嵌入 `custom` 代码块。此代码块中的内容将作为额外指示,被内置到播客脚本生成的核心提示词(`prompt-podscript.txt`)之中,从而影响 AI 的生成行为。
**使用方法**
`input.txt` 文件的任意位置,使用以下格式定义您的自定义内容:
```
```custom-begin
您希望提供给 AI 的额外指令或上下文,例如:
- “请确保讨论中包含对 [特定概念] 的深入分析。”
- “请在对话中加入一些幽默元素,特别是关于 [某个主题] 的笑话。”
- “所有角色的发言都必须是简短的,并且每句话不超过两行。”
```custom-end
```
**效果**
`custom` 代码块中的所有文本内容(不包括 `custom-begin``custom-end` 标签本身)会被提取出来,并附加到 [`prompt/prompt-podscript.txt`](prompt/prompt-podscript.txt) 模板处理后的内容之中。这意味着,这些自定义指令将直接影响 AI 在生成具体播客对话脚本时的决策和风格,帮助您更精准地控制输出。
**示例场景**
如果您希望 AI 在讨论一个技术话题时,特别强调某个技术趋势的未来发展,您可以在 `input.txt` 中添加:
```
```custom-begin
请在讨论中预见性地分析人工智能在未来五年内可能带来的颠覆性变革,并提及量子计算对现有加密技术的潜在影响。
```custom-end
```
---
## ⚙️ 配置文件详解 (`config/*.json`)
配置文件是整个项目的“大脑”,它告诉脚本如何与 AI 和 TTS 服务协同工作。
```json
{
"podUsers": [
{
"code": "zh-CN-XiaoxiaoNeural",
"role": "主持人"
},
{
"code": "zh-CN-YunxiNeural",
"role": "技术专家"
}
],
"voices": [
{
"name": "XiaoMin",
"alias": "晓敏",
"code": "yue-CN-XiaoMinNeural",
"locale": "yue-CN",
"gender": "Female",
"usedname": "晓敏"
},
{
"name": "YunSong",
"alias": "云松",
"code": "yue-CN-YunSongNeural",
"locale": "yue-CN",
"gender": "Male",
"usedname": "云松"
}
],
"apiUrl": "http://localhost:5000/api/tts?text={{text}}&voiceCode={{voiceCode}}",
"turnPattern": "random"
}
```
* `podUsers`: 定义播客中的**角色**。每个角色的 `code` 必须对应 `voices` 列表中的一个有效语音。
* `voices`: 定义所有可用的 TTS **语音**
* `apiUrl`: 您的 TTS 服务 API 端点。`{{text}}` 将被替换为对话文本,`{{voiceCode}}` 将被替换为角色的语音代码。
* `turnPattern`: 定义角色对话的**轮流模式**,例如 `random` (随机) 或 `sequential` (顺序)。
---
## 🔌 TTS (Text-to-Speech) 服务集成
本项目设计为高度灵活,支持多种 TTS 服务,无论是本地部署还是基于云的网络服务,都可以通过简单的配置进行集成。
### 💻 本地 TTS 接口支持
您可以将以下开源项目作为本地 TTS 服务部署,并通过 `apiUrl` 配置集成到本项目中:
* **index-tts**: [https://github.com/index-tts/index-tts](https://github.com/index-tts/index-tts)
* **配合使用**: 需要配合 `ext/index-tts-api.py` 文件运行,该文件提供了一个简单的 API 接口,将 `index-tts` 封装为本项目可调用的服务。
* **edge-tts**: [https://github.com/zuoban/tts](https://github.com/zuoban/tts)
* 这是一个通用的 TTS 库,您可以通过自定义适配器将其集成。
### 🌐 网络 TTS 接口支持(未完成)
本项目也可以轻松配置集成各种网络 TTS 服务,只需确保您的 `apiUrl` 配置符合服务提供商的要求。常见的支持服务包括:
* **OpenAI TTS**
* **Azure TTS**
* **Google Cloud Text-to-Speech (Vertex AI)**
* **Minimax TTS**
* **Gemini TTS** (可能需要通过自定义 API 适配器集成)
* **Fish Audio TTS**
---
## 🎉 输出成果
所有成功生成的播客音频文件将自动保存在 `output/` 目录下。文件名格式为 `podcast_` 加上生成时的时间戳,例如 `podcast_1678886400.wav`
## 🎧 示例音频
您可以在 `example/` 文件夹中找到使用不同 TTS 服务生成的播客示例音频:
* **Edge TTS 生成示例**: <audio controls src="example/edgeTTS_podcast_1754467217.aac"></audio>
* **Index TTS 生成示例**: <audio controls src="example/indexTTS_podcast_1754467749.aac"></audio>
这些音频文件展示了本工具在实际应用中的效果。
---
## 📂 文件结构
```
.
├── config/ # ⚙️ 配置文件目录
│ ├── edge-tts.json
│ └── index-tts.json
├── prompt/ # 🧠 AI 提示词目录
│ ├── prompt-overview.txt
│ └── prompt-podscript.txt
├── output/ # 🎉 输出音频目录
├── input.txt # 🎙️ 播客主题输入文件
├── openai_cli.py # OpenAI 命令行工具
├── podcast_generator.py # 🚀 主运行脚本
└── README.md # 📄 项目说明文档
```