face detection by one-shot simple version
This commit is contained in:
85
Class/collect_data/features_extraction_to_csv.py
Normal file
85
Class/collect_data/features_extraction_to_csv.py
Normal file
@@ -0,0 +1,85 @@
|
||||
# 从人脸图像文件中提取人脸特征存入 CSV
|
||||
|
||||
import os
|
||||
import dlib
|
||||
from skimage import io
|
||||
import csv
|
||||
import numpy as np
|
||||
|
||||
# 要读取人脸图像文件的路径
|
||||
path_images_from_camera = "data/data_faces_from_camera/"
|
||||
|
||||
# 1. Dlib 正向人脸检测器
|
||||
detector = dlib.get_frontal_face_detector()
|
||||
|
||||
# 2. Dlib 人脸 landmark 特征点检测器
|
||||
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
|
||||
|
||||
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
|
||||
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
||||
|
||||
|
||||
# 返回单张图像的 128D 特征
|
||||
def return_128d_features(path_img):
|
||||
img_rd = io.imread(path_img)
|
||||
faces = detector(img_rd, 1)
|
||||
|
||||
print("%-40s %-20s" % ("检测到人脸的图像 / Image with faces detected:", path_img), '\n')
|
||||
|
||||
# 因为有可能截下来的人脸再去检测,检测不出来人脸了
|
||||
# 所以要确保是 检测到人脸的人脸图像 拿去算特征
|
||||
if len(faces) != 0:
|
||||
shape = predictor(img_rd, faces[0])
|
||||
face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape)
|
||||
else:
|
||||
face_descriptor = 0
|
||||
print("no face")
|
||||
|
||||
return face_descriptor
|
||||
|
||||
|
||||
# 将文件夹中照片特征提取出来, 写入 CSV
|
||||
def return_features_mean_personX(path_faces_personX):
|
||||
features_list_personX = []
|
||||
photos_list = os.listdir(path_faces_personX)
|
||||
if photos_list:
|
||||
for i in range(len(photos_list)):
|
||||
# 调用return_128d_features()得到128d特征
|
||||
print("%-40s %-20s" % ("正在读的人脸图像 / Image to read:", path_faces_personX + "/" + photos_list[i]))
|
||||
features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i])
|
||||
# print(features_128d)
|
||||
# 遇到没有检测出人脸的图片跳过
|
||||
if features_128d == 0:
|
||||
i += 1
|
||||
else:
|
||||
features_list_personX.append(features_128d)
|
||||
else:
|
||||
print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/', '\n')
|
||||
|
||||
# 计算 128D 特征的均值
|
||||
# personX 的 N 张图像 x 128D -> 1 x 128D
|
||||
if features_list_personX:
|
||||
features_mean_personX = np.array(features_list_personX).mean(axis=0)
|
||||
else:
|
||||
features_mean_personX = np.zeros(128, dtype=int, order='C')
|
||||
|
||||
return features_mean_personX
|
||||
|
||||
|
||||
# 获取已录入的最后一个人脸序号 / get the num of latest person
|
||||
person_list = os.listdir("data/data_faces_from_camera/")
|
||||
person_num_list = []
|
||||
for person in person_list:
|
||||
person_num_list.append(int(person.split('_')[-1]))
|
||||
person_cnt = max(person_num_list)
|
||||
|
||||
with open("data/features_all.csv", "w", newline="") as csvfile:
|
||||
writer = csv.writer(csvfile)
|
||||
for person in range(person_cnt):
|
||||
# Get the mean/average features of face/personX, it will be a list with a length of 128D
|
||||
print(path_images_from_camera + "person_" + str(person + 1))
|
||||
features_mean_personX = return_features_mean_personX(path_images_from_camera + "person_" + str(person + 1))
|
||||
writer.writerow(features_mean_personX)
|
||||
print("特征均值 / The mean of features:", list(features_mean_personX))
|
||||
print('\n')
|
||||
print("所有录入人脸数据存入 / Save all the features of faces registered into: data/features_all.csv")
|
||||
Reference in New Issue
Block a user