face detection by one-shot simple version
This commit is contained in:
213
Class/collect_data/face_reco_from_camera.py
Normal file
213
Class/collect_data/face_reco_from_camera.py
Normal file
@@ -0,0 +1,213 @@
|
||||
# 摄像头实时人脸识别
|
||||
|
||||
import dlib
|
||||
import numpy as np
|
||||
import cv2
|
||||
import pandas as pd
|
||||
import os
|
||||
import time
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
# 1. Dlib 正向人脸检测器
|
||||
detector = dlib.get_frontal_face_detector()
|
||||
|
||||
# 2. Dlib 人脸 landmark 特征点检测器
|
||||
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
|
||||
|
||||
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
|
||||
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
||||
|
||||
|
||||
class Face_Recognizer:
|
||||
def __init__(self):
|
||||
# 用来存放所有录入人脸特征的数组
|
||||
self.features_known_list = []
|
||||
|
||||
# 存储录入人脸名字
|
||||
self.name_known_cnt = 0
|
||||
self.name_known_list = []
|
||||
|
||||
# 存储当前摄像头中捕获到的所有人脸的坐标名字
|
||||
self.pos_camera_list = []
|
||||
self.name_camera_list = []
|
||||
# 存储当前摄像头中捕获到的人脸数
|
||||
self.faces_cnt = 0
|
||||
# 存储当前摄像头中捕获到的人脸特征
|
||||
self.features_camera_list = []
|
||||
|
||||
# Update FPS
|
||||
self.fps = 0
|
||||
self.frame_start_time = 0
|
||||
|
||||
# 从 "features_all.csv" 读取录入人脸特征
|
||||
def get_face_database(self):
|
||||
if os.path.exists("data/features_all.csv"):
|
||||
path_features_known_csv = "data/features_all.csv"
|
||||
csv_rd = pd.read_csv(path_features_known_csv, header=None)
|
||||
# 2. 读取已知人脸数据
|
||||
for i in range(csv_rd.shape[0]):
|
||||
features_someone_arr = []
|
||||
for j in range(0, 128):
|
||||
if csv_rd.iloc[i][j] == '':
|
||||
features_someone_arr.append('0')
|
||||
else:
|
||||
features_someone_arr.append(csv_rd.iloc[i][j])
|
||||
self.features_known_list.append(features_someone_arr)
|
||||
self.name_known_list.append("Person_"+str(i+1))
|
||||
self.name_known_cnt = len(self.name_known_list)
|
||||
print("Faces in Database:", len(self.features_known_list))
|
||||
return 1
|
||||
else:
|
||||
print('##### Warning #####', '\n')
|
||||
print("'features_all.csv' not found!")
|
||||
print(
|
||||
"Please run 'get_faces_from_camera.py' and 'features_extraction_to_csv.py' before 'face_reco_from_camera.py'",
|
||||
'\n')
|
||||
print('##### End Warning #####')
|
||||
return 0
|
||||
|
||||
# 计算两个128D向量间的欧式距离
|
||||
@staticmethod
|
||||
def return_euclidean_distance(feature_1, feature_2):
|
||||
feature_1 = np.array(feature_1)
|
||||
feature_2 = np.array(feature_2)
|
||||
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
|
||||
return dist
|
||||
|
||||
# 更新 FPS
|
||||
def update_fps(self):
|
||||
now = time.time()
|
||||
self.frame_time = now - self.frame_start_time
|
||||
self.fps = 1.0 / self.frame_time
|
||||
self.frame_start_time = now
|
||||
|
||||
def draw_note(self, img_rd):
|
||||
font = cv2.FONT_ITALIC
|
||||
|
||||
cv2.putText(img_rd, "Face Recognizer", (20, 40), font, 1, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Faces: " + str(self.faces_cnt), (20, 140), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Q: Quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
|
||||
def draw_name(self, img_rd):
|
||||
# 在人脸框下面写人脸名字
|
||||
font = ImageFont.truetype("simsun.ttc", 30)
|
||||
img = Image.fromarray(cv2.cvtColor(img_rd, cv2.COLOR_BGR2RGB))
|
||||
draw = ImageDraw.Draw(img)
|
||||
for i in range(self.faces_cnt):
|
||||
# cv2.putText(img_rd, self.name_camera_list[i], self.pos_camera_list[i], font, 0.8, (0, 255, 255), 1, cv2.LINE_AA)
|
||||
draw.text(xy=self.pos_camera_list[i], text=self.name_camera_list[i], font=font)
|
||||
img_with_name = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
||||
return img_with_name
|
||||
|
||||
# 修改显示人名
|
||||
def modify_name_camera_list(self):
|
||||
# TODO 数据库 ID
|
||||
# Default known name: person_1, person_2, person_3
|
||||
self.name_known_list[0] ='唐麒'.encode('utf-8').decode()
|
||||
# self.name_known_list[1] ='李四'.encode('utf-8').decode()
|
||||
# self.name_known_list[2] ='xx'.encode('utf-8').decode()
|
||||
# self.name_known_list[3] ='xx'.encode('utf-8').decode()
|
||||
# self.name_known_list[4] ='xx'.encode('utf-8').decode()
|
||||
|
||||
# 处理获取的视频流,进行人脸识别
|
||||
def process(self, stream):
|
||||
# 1. 读取存放所有人脸特征的 csv
|
||||
if self.get_face_database():
|
||||
while stream.isOpened():
|
||||
flag, img_rd = stream.read()
|
||||
faces = detector(img_rd, 0)
|
||||
kk = cv2.waitKey(1)
|
||||
# 按下 q 键退出
|
||||
if kk == ord('q'):
|
||||
break
|
||||
else:
|
||||
self.draw_note(img_rd)
|
||||
self.features_camera_list = []
|
||||
self.faces_cnt = 0
|
||||
self.pos_camera_list = []
|
||||
self.name_camera_list = []
|
||||
|
||||
# 2. 检测到人脸
|
||||
if len(faces) != 0:
|
||||
# 3. 获取当前捕获到的图像的所有人脸的特征,存储到 self.features_camera_list
|
||||
for i in range(len(faces)):
|
||||
shape = predictor(img_rd, faces[i])
|
||||
self.features_camera_list.append(face_reco_model.compute_face_descriptor(img_rd, shape))
|
||||
|
||||
# 4. 遍历捕获到的图像中所有的人脸
|
||||
for k in range(len(faces)):
|
||||
print("##### camera person", k + 1, "#####")
|
||||
# 让人名跟随在矩形框的下方
|
||||
# 确定人名的位置坐标
|
||||
# 先默认所有人不认识,是 unknown
|
||||
# Set the default names of faces with "unknown"
|
||||
self.name_camera_list.append("unknown")
|
||||
|
||||
# 每个捕获人脸的名字坐标
|
||||
self.pos_camera_list.append(tuple(
|
||||
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
|
||||
|
||||
# 5. 对于某张人脸,遍历所有存储的人脸特征
|
||||
e_distance_list = []
|
||||
for i in range(len(self.features_known_list)):
|
||||
# 如果 person_X 数据不为空
|
||||
if str(self.features_known_list[i][0]) != '0.0':
|
||||
print("with person", str(i + 1), "the e distance: ", end='')
|
||||
e_distance_tmp = self.return_euclidean_distance(self.features_camera_list[k],
|
||||
self.features_known_list[i])
|
||||
print(e_distance_tmp)
|
||||
e_distance_list.append(e_distance_tmp)
|
||||
else:
|
||||
# 空数据 person_X
|
||||
e_distance_list.append(999999999)
|
||||
# 6. 寻找出最小的欧式距离匹配
|
||||
similar_person_num = e_distance_list.index(min(e_distance_list))
|
||||
print("Minimum e distance with person", self.name_known_list[similar_person_num])
|
||||
|
||||
if min(e_distance_list) < 0.4:
|
||||
self.name_camera_list[k] = self.name_known_list[similar_person_num]
|
||||
print("May be person " + str(self.name_known_list[similar_person_num]))
|
||||
else:
|
||||
print("Unknown person")
|
||||
|
||||
# 矩形框
|
||||
for kk, d in enumerate(faces):
|
||||
# 绘制矩形框
|
||||
cv2.rectangle(img_rd, tuple([d.left(), d.top()]), tuple([d.right(), d.bottom()]),
|
||||
(0, 255, 255), 2)
|
||||
print('\n')
|
||||
|
||||
self.faces_cnt = len(faces)
|
||||
# 7. 在这里更改显示的人名
|
||||
self.modify_name_camera_list()
|
||||
# 8. 写名字
|
||||
# self.draw_name(img_rd)
|
||||
img_with_name = self.draw_name(img_rd)
|
||||
else:
|
||||
img_with_name = img_rd
|
||||
|
||||
print("Faces in camera now:", self.name_camera_list, "\n")
|
||||
|
||||
cv2.imshow("camera", img_with_name)
|
||||
|
||||
# 9. 更新 FPS / Update stream FPS
|
||||
self.update_fps()
|
||||
|
||||
# OpenCV 调用摄像头并进行 process
|
||||
def run(self):
|
||||
cap = cv2.VideoCapture(0)
|
||||
cap.set(3, 480)
|
||||
self.process(cap)
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
def main():
|
||||
Face_Recognizer_con = Face_Recognizer()
|
||||
Face_Recognizer_con.run()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
85
Class/collect_data/features_extraction_to_csv.py
Normal file
85
Class/collect_data/features_extraction_to_csv.py
Normal file
@@ -0,0 +1,85 @@
|
||||
# 从人脸图像文件中提取人脸特征存入 CSV
|
||||
|
||||
import os
|
||||
import dlib
|
||||
from skimage import io
|
||||
import csv
|
||||
import numpy as np
|
||||
|
||||
# 要读取人脸图像文件的路径
|
||||
path_images_from_camera = "data/data_faces_from_camera/"
|
||||
|
||||
# 1. Dlib 正向人脸检测器
|
||||
detector = dlib.get_frontal_face_detector()
|
||||
|
||||
# 2. Dlib 人脸 landmark 特征点检测器
|
||||
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
|
||||
|
||||
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
|
||||
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
||||
|
||||
|
||||
# 返回单张图像的 128D 特征
|
||||
def return_128d_features(path_img):
|
||||
img_rd = io.imread(path_img)
|
||||
faces = detector(img_rd, 1)
|
||||
|
||||
print("%-40s %-20s" % ("检测到人脸的图像 / Image with faces detected:", path_img), '\n')
|
||||
|
||||
# 因为有可能截下来的人脸再去检测,检测不出来人脸了
|
||||
# 所以要确保是 检测到人脸的人脸图像 拿去算特征
|
||||
if len(faces) != 0:
|
||||
shape = predictor(img_rd, faces[0])
|
||||
face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape)
|
||||
else:
|
||||
face_descriptor = 0
|
||||
print("no face")
|
||||
|
||||
return face_descriptor
|
||||
|
||||
|
||||
# 将文件夹中照片特征提取出来, 写入 CSV
|
||||
def return_features_mean_personX(path_faces_personX):
|
||||
features_list_personX = []
|
||||
photos_list = os.listdir(path_faces_personX)
|
||||
if photos_list:
|
||||
for i in range(len(photos_list)):
|
||||
# 调用return_128d_features()得到128d特征
|
||||
print("%-40s %-20s" % ("正在读的人脸图像 / Image to read:", path_faces_personX + "/" + photos_list[i]))
|
||||
features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i])
|
||||
# print(features_128d)
|
||||
# 遇到没有检测出人脸的图片跳过
|
||||
if features_128d == 0:
|
||||
i += 1
|
||||
else:
|
||||
features_list_personX.append(features_128d)
|
||||
else:
|
||||
print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/', '\n')
|
||||
|
||||
# 计算 128D 特征的均值
|
||||
# personX 的 N 张图像 x 128D -> 1 x 128D
|
||||
if features_list_personX:
|
||||
features_mean_personX = np.array(features_list_personX).mean(axis=0)
|
||||
else:
|
||||
features_mean_personX = np.zeros(128, dtype=int, order='C')
|
||||
|
||||
return features_mean_personX
|
||||
|
||||
|
||||
# 获取已录入的最后一个人脸序号 / get the num of latest person
|
||||
person_list = os.listdir("data/data_faces_from_camera/")
|
||||
person_num_list = []
|
||||
for person in person_list:
|
||||
person_num_list.append(int(person.split('_')[-1]))
|
||||
person_cnt = max(person_num_list)
|
||||
|
||||
with open("data/features_all.csv", "w", newline="") as csvfile:
|
||||
writer = csv.writer(csvfile)
|
||||
for person in range(person_cnt):
|
||||
# Get the mean/average features of face/personX, it will be a list with a length of 128D
|
||||
print(path_images_from_camera + "person_" + str(person + 1))
|
||||
features_mean_personX = return_features_mean_personX(path_images_from_camera + "person_" + str(person + 1))
|
||||
writer.writerow(features_mean_personX)
|
||||
print("特征均值 / The mean of features:", list(features_mean_personX))
|
||||
print('\n')
|
||||
print("所有录入人脸数据存入 / Save all the features of faces registered into: data/features_all.csv")
|
||||
BIN
Data/data_dlib/dlib_face_recognition_resnet_model_v1.dat
Normal file
BIN
Data/data_dlib/dlib_face_recognition_resnet_model_v1.dat
Normal file
Binary file not shown.
BIN
Data/data_dlib/shape_predictor_68_face_landmarks.dat
Normal file
BIN
Data/data_dlib/shape_predictor_68_face_landmarks.dat
Normal file
Binary file not shown.
Reference in New Issue
Block a user