Update Readme.md

This commit is contained in:
Tang
2020-08-03 09:20:30 +08:00
committed by GitHub
parent 74361a4e58
commit 1e6d82f861

View File

@@ -104,8 +104,7 @@ Triplet 是一个三元组,这个三元组是这样构成的:从训练数据
</table>
不同人脸检测器的效果如下图所示
https://5618.oss-cn-beijing.aliyuncs.com/wordpress/image/05/08.gif
<div class="imgs" align="center" ><img src="https://github.com/Tang1705/image_set/raw/master/CVofSSE/08.gif" alt="01" width="70%" height="70%"/></div>
此外,从用户角度出发,在建立人脸数据库时,通过 OpenCV 和 win32com 从文字和语音方面进行操作提示。
@@ -158,14 +157,15 @@ https://5618.oss-cn-beijing.aliyuncs.com/wordpress/image/05/08.gif
<div class="imgs" align="center" ><img src="https://5618.oss-cn-beijing.aliyuncs.com/wordpress/image/05/17.png" alt="01" width="30%" height="30%"/></div>
该摔倒检测算法的效果如下
http://tang5618.com/data/video/03.mp4
[![ScreenShot](http://static.zybuluo.com/TangWill/i26snix0xac8luh8bnyqapax/%E6%89%B9%E6%B3%A8%202020-08-03%20091516.jpg)](https://youtu.be/H7GJdEIA9iM)
<div class="wp-block-qubely-advancedlist aligncenter qubely-block-a3df80"><div class="qubely-block-advanced-list qubely-alignment-left"><ul class="qubely-list qubely-list-type-unordered qubely-list-bullet-check"><li>系统标定与互动检测
</li></ul></div></div>
在互动检测上我们假定老人与义工的距离小于50cm即发生互动。因此需要建立像素坐标系与世界坐标系的映射关系。伪随机序列具有良好的窗口特性即通过一个较小的窗口在编码图案上面移动时每个窗口内的编码组合是唯一的根据窗口的这个特性可以唯一地辨识编码图案上的特征点。
$h(x)=2x^6+2x^5+x^4+3x^3+2x^2+2x+1$ 作为本原多项式生成伪随机序列,通过伽罗华域下的四则运算,生成 $65 \times 63$ 的伪随机矩阵,窗口大小为 $2 \times 3$。 <a href="https://ieeexplore.ieee.org/document/5342428" target="_blank" class="far fa-file-pdf" aria-hidden="true" style="text-indent: -0.1em;" rel="noopener noreferrer"></a>
<a href="https://www.codecogs.com/eqnedit.php?latex=h(x)=2x^6&plus;2x^5&plus;x^4&plus;3x^3&plus;2x^2&plus;2x&plus;1" target="_blank"><img src="https://latex.codecogs.com/gif.latex?h(x)=2x^6&plus;2x^5&plus;x^4&plus;3x^3&plus;2x^2&plus;2x&plus;1" title="h(x)=2x^6+2x^5+x^4+3x^3+2x^2+2x+1" /></a> 作为本原多项式生成伪随机序列,通过伽罗华域下的四则运算,生成 <a href="https://www.codecogs.com/eqnedit.php?latex=65&space;\times&space;63" target="_blank"><img src="https://latex.codecogs.com/gif.latex?65&space;\times&space;63" title="65 \times 63" /></a> 的伪随机矩阵,窗口大小为 <a href="https://www.codecogs.com/eqnedit.php?latex=2&space;\times&space;3" target="_blank"><img src="https://latex.codecogs.com/gif.latex?2&space;\times&space;3" title="2 \times 3" /></a>。 <a href="https://ieeexplore.ieee.org/document/5342428" target="_blank" class="far fa-file-pdf" aria-hidden="true" style="text-indent: -0.1em;" rel="noopener noreferrer"></a>
<div class="imgs" align="center" ><img src="https://5618.oss-cn-beijing.aliyuncs.com/wordpress/image/05/18.png" alt="01" width="30%" height="30%" hspace="10" /> <img src="https://5618.oss-cn-beijing.aliyuncs.com/wordpress/image/05/19.png" alt="02" width="30%" height="30%" hspace="10" /> <img src="https://5618.oss-cn-beijing.aliyuncs.com/wordpress/image/05/20.png" alt="02" width="30%" height="30%" hspace="10" /></div>
@@ -173,8 +173,8 @@ http://tang5618.com/data/video/03.mp4
通过设计的解码算法可以将角点位置精确到亚像素在Lab演色空间下进行颜色分类完成解码。
- 确定候选特征点:$d=\mid \sum_{i=-\varepsilon}^{\varepsilon} I_{c}(x+i, y)-\sum_{j=-\varepsilon}^{\varepsilon} I_{c}(x, y+j)|$
- 确定特征点:$\rho_c =\frac{n \sum_{i=1}^{n} M_{C_{1}} M_{C_{1}}^{\prime}-\sum_{i=1}^{n} M_{C_{1}} \sum_{i=1}^{n} M_{C_{i}}^{\prime}}{\sqrt{n \sum_{i=1}^{n} M_{C_{1}}^{2}-\left(\sum_{i=1}^{n} M_{C_{i}}\right)^{2}} \sqrt{n \sum_{i=1}^{n} M_{C_{i}}^{\prime} 2-\left(\sum_{i=1}^{n} M_{C_{i}}^{\prime}\right)^{2}}}$
- 确定候选特征点:<a href="https://www.codecogs.com/eqnedit.php?latex=d=\mid&space;\sum_{i=-\varepsilon}^{\varepsilon}&space;I_{c}(x&plus;i,&space;y)-\sum_{j=-\varepsilon}^{\varepsilon}&space;I_{c}(x,&space;y&plus;j)|" target="_blank"><img src="https://latex.codecogs.com/gif.latex?d=\mid&space;\sum_{i=-\varepsilon}^{\varepsilon}&space;I_{c}(x&plus;i,&space;y)-\sum_{j=-\varepsilon}^{\varepsilon}&space;I_{c}(x,&space;y&plus;j)|" title="d=\mid \sum_{i=-\varepsilon}^{\varepsilon} I_{c}(x+i, y)-\sum_{j=-\varepsilon}^{\varepsilon} I_{c}(x, y+j)|" /></a>
- 确定特征点:<a href="https://www.codecogs.com/eqnedit.php?latex=\rho_c&space;=\frac{n&space;\sum_{i=1}^{n}&space;M_{C_{1}}&space;M_{C_{1}}^{\prime}-\sum_{i=1}^{n}&space;M_{C_{1}}&space;\sum_{i=1}^{n}&space;M_{C_{i}}^{\prime}}{\sqrt{n&space;\sum_{i=1}^{n}&space;M_{C_{1}}^{2}-\left(\sum_{i=1}^{n}&space;M_{C_{i}}\right)^{2}}&space;\sqrt{n&space;\sum_{i=1}^{n}&space;M_{C_{i}}^{\prime}&space;2-\left(\sum_{i=1}^{n}&space;M_{C_{i}}^{\prime}\right)^{2}}}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\rho_c&space;=\frac{n&space;\sum_{i=1}^{n}&space;M_{C_{1}}&space;M_{C_{1}}^{\prime}-\sum_{i=1}^{n}&space;M_{C_{1}}&space;\sum_{i=1}^{n}&space;M_{C_{i}}^{\prime}}{\sqrt{n&space;\sum_{i=1}^{n}&space;M_{C_{1}}^{2}-\left(\sum_{i=1}^{n}&space;M_{C_{i}}\right)^{2}}&space;\sqrt{n&space;\sum_{i=1}^{n}&space;M_{C_{i}}^{\prime}&space;2-\left(\sum_{i=1}^{n}&space;M_{C_{i}}^{\prime}\right)^{2}}}" title="\rho_c =\frac{n \sum_{i=1}^{n} M_{C_{1}} M_{C_{1}}^{\prime}-\sum_{i=1}^{n} M_{C_{1}} \sum_{i=1}^{n} M_{C_{i}}^{\prime}}{\sqrt{n \sum_{i=1}^{n} M_{C_{1}}^{2}-\left(\sum_{i=1}^{n} M_{C_{i}}\right)^{2}} \sqrt{n \sum_{i=1}^{n} M_{C_{i}}^{\prime} 2-\left(\sum_{i=1}^{n} M_{C_{i}}^{\prime}\right)^{2}}}" /></a>
- 8邻域广度优先搜索将特征点位置精确到亚像素
- 色彩校正、Lab 颜色空间对菱形颜色分类并解码