更新配置文件,移除不再支持的模型配置,调整默认模型设置,并添加最大历史消息数配置。同时,重构代码以提高可读性,删除冗余的模型处理逻辑,确保代码结构更加简洁。

This commit is contained in:
Zylan
2025-04-24 03:40:25 +08:00
parent 02cd2effbd
commit 61cc9c89cc
27 changed files with 489 additions and 1939 deletions

View File

@@ -47,14 +47,8 @@ Bubbles 是一个功能丰富的微信机器人框架,基于 [wcferry](https:/
#### 🤖 灵活的模型配置
- 支持为不同的群聊和私聊设置不同的 AI 模型和 system prompt
- OpenAI (ChatGPT)
- Google Gemini
- 智谱 AI (ChatGLM)
- 科大讯飞星火大模型
- 阿里云通义千问
- TigerBot
- DeepSeek
- Perplexity
- Ollama (本地部署的模型)
#### 🛠️ 丰富的命令系统
- 强大的命令路由系统,让功能新增无比简单

View File

@@ -1,44 +0,0 @@
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import google.generativeai as genai
class BardAssistant:
def __init__(self, conf: dict) -> None:
self._api_key = conf["api_key"]
self._model_name = conf["model_name"]
self._prompt = conf['prompt']
self._proxy = conf['proxy']
genai.configure(api_key=self._api_key)
self._bard = genai.GenerativeModel(self._model_name)
def __repr__(self):
return 'BardAssistant'
@staticmethod
def value_check(conf: dict) -> bool:
if conf:
if conf.get("api_key") and conf.get("model_name") and conf.get("prompt"):
return True
return False
def get_answer(self, msg: str, sender: str = None) -> str:
response = self._bard.generate_content([{'role': 'user', 'parts': [msg]}])
return response.text
if __name__ == "__main__":
from configuration import Config
config = Config().BardAssistant
if not config:
exit(0)
bard_assistant = BardAssistant(config)
if bard_assistant._proxy:
os.environ['HTTP_PROXY'] = bard_assistant._proxy
os.environ['HTTPS_PROXY'] = bard_assistant._proxy
rsp = bard_assistant.get_answer(bard_assistant._prompt)
print(rsp)

View File

@@ -1,199 +0,0 @@
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
import json
import os
import random
import logging
from datetime import datetime
from typing import Optional
import httpx
from openai import OpenAI
from ai_providers.chatglm.code_kernel import CodeKernel, execute
from ai_providers.chatglm.tool_registry import dispatch_tool, extract_code, get_tools
from wcferry import Wcf
# 获取模块级 logger
logger = logging.getLogger(__name__)
functions = get_tools()
class ChatGLM:
def __init__(self, config={}, wcf: Optional[Wcf] = None, max_retry=5) -> None:
key = config.get("key", 'empty')
api = config.get("api")
proxy = config.get("proxy")
if proxy:
self.client = OpenAI(api_key=key, base_url=api, http_client=httpx.Client(proxy=proxy))
else:
self.client = OpenAI(api_key=key, base_url=api)
self.conversation_list = {}
self.chat_type = {}
self.max_retry = max_retry
self.wcf = wcf
self.filePath = config["file_path"]
self.kernel = CodeKernel()
self.system_content_msg = {"chat": [{"role": "system", "content": config["prompt"]}],
"tool": [{"role": "system",
"content": "Answer the following questions as best as you can. You have access to the following tools:"}],
"code": [{"role": "system",
"content": "你是一位智能AI助手你叫ChatGLM你连接着一台电脑但请注意不能联网。在使用Python解决任务时你可以运行代码并得到结果如果运行结果有错误你需要尽可能对代码进行改进。你可以处理用户上传到电脑上的文件文件默认存储路径是{}".format(
self.filePath)}]}
def __repr__(self):
return 'ChatGLM'
@staticmethod
def value_check(conf: dict) -> bool:
if conf:
if conf.get("api") and conf.get("prompt") and conf.get("file_path"):
return True
return False
def get_answer(self, question: str, wxid: str) -> str:
# wxid或者roomid,个人时为微信id群消息时为群id
if '#帮助' == question:
return '本助手有三种模式,#聊天模式 = #1 #工具模式 = #2 #代码模式 = #3 , #清除模式会话 = #4 , #清除全部会话 = #5 可用发送#对应模式 或者 #编号 进行切换'
elif '#聊天模式' == question or '#1' == question:
self.chat_type[wxid] = 'chat'
return '已切换#聊天模式'
elif '#工具模式' == question or '#2' == question:
self.chat_type[wxid] = 'tool'
return '已切换#工具模式 \n工具有:查看天气,日期,新闻,comfyUI文生图。例如\n帮我生成一张小鸟的图片,提示词必须是英文'
elif '#代码模式' == question or '#3' == question:
self.chat_type[wxid] = 'code'
return '已切换#代码模式 \n代码模式可以用于写python代码例如\n用python画一个爱心'
elif '#清除模式会话' == question or '#4' == question:
self.conversation_list[wxid][self.chat_type[wxid]
] = self.system_content_msg[self.chat_type[wxid]]
return '已清除'
elif '#清除全部会话' == question or '#5' == question:
self.conversation_list[wxid] = self.system_content_msg
return '已清除'
self.updateMessage(wxid, question, "user")
try:
params = dict(model="chatglm3", temperature=1.0,
messages=self.conversation_list[wxid][self.chat_type[wxid]], stream=False)
if 'tool' == self.chat_type[wxid]:
params["tools"] = [dict(type='function', function=d) for d in functions.values()]
response = self.client.chat.completions.create(**params)
for _ in range(self.max_retry):
if response.choices[0].message.get("function_call"):
function_call = response.choices[0].message.function_call
logger.debug(
f"Function Call Response: {function_call.to_dict_recursive()}")
function_args = json.loads(function_call.arguments)
observation = dispatch_tool(
function_call.name, function_args)
if isinstance(observation, dict):
res_type = observation['res_type'] if 'res_type' in observation else 'text'
res = observation['res'] if 'res_type' in observation else str(
observation)
if res_type == 'image':
filename = observation['filename']
filePath = os.path.join(self.filePath, filename)
res.save(filePath)
self.wcf and self.wcf.send_image(filePath, wxid)
tool_response = '[Image]' if res_type == 'image' else res
else:
tool_response = observation if isinstance(
observation, str) else str(observation)
logger.debug(f"Tool Call Response: {tool_response}")
params["messages"].append(response.choices[0].message)
params["messages"].append(
{
"role": "function",
"name": function_call.name,
"content": tool_response, # 调用函数返回结果
}
)
self.updateMessage(wxid, tool_response, "function")
response = self.client.chat.completions.create(**params)
elif response.choices[0].message.content.find('interpreter') != -1:
output_text = response.choices[0].message.content
code = extract_code(output_text)
self.wcf and self.wcf.send_text('代码如下:\n' + code, wxid)
self.wcf and self.wcf.send_text('执行代码...', wxid)
try:
res_type, res = execute(code, self.kernel)
except Exception as e:
rsp = f'代码执行错误: {e}'
break
if res_type == 'image':
filename = '{}.png'.format(''.join(random.sample(
'abcdefghijklmnopqrstuvwxyz1234567890', 8)))
filePath = os.path.join(self.filePath, filename)
res.save(filePath)
self.wcf and self.wcf.send_image(filePath, wxid)
else:
self.wcf and self.wcf.send_text("执行结果:\n" + res, wxid)
tool_response = '[Image]' if res_type == 'image' else res
logger.debug("Received: %s %s", res_type, res)
params["messages"].append(response.choices[0].message)
params["messages"].append(
{
"role": "function",
"name": "interpreter",
"content": tool_response, # 调用函数返回结果
}
)
self.updateMessage(wxid, tool_response, "function")
response = self.client.chat.completions.create(**params)
else:
rsp = response.choices[0].message.content
break
self.updateMessage(wxid, rsp, "assistant")
except Exception as e0:
rsp = "发生未知错误:" + str(e0)
return rsp
def updateMessage(self, wxid: str, question: str, role: str) -> None:
now_time = str(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
# 初始化聊天记录,组装系统信息
if wxid not in self.conversation_list.keys():
self.conversation_list[wxid] = self.system_content_msg
if wxid not in self.chat_type.keys():
self.chat_type[wxid] = 'chat'
# 当前问题
content_question_ = {"role": role, "content": question}
self.conversation_list[wxid][self.chat_type[wxid]].append(
content_question_)
# 只存储10条记录超过滚动清除
i = len(self.conversation_list[wxid][self.chat_type[wxid]])
if i > 10:
logger.info("滚动清除微信记录:%s", wxid)
# 删除多余的记录,倒着删,且跳过第一个的系统消息
del self.conversation_list[wxid][self.chat_type[wxid]][1]
if __name__ == "__main__":
from configuration import Config
config = Config().CHATGLM
if not config:
exit(0)
chat = ChatGLM(config)
while True:
q = input(">>> ")
try:
time_start = datetime.now() # 记录开始时间
logger.info(chat.get_answer(q, "wxid"))
time_end = datetime.now() # 记录结束时间
# 计算的时间差为程序的执行时间,单位为秒/s
logger.info(f"{round((time_end - time_start).total_seconds(), 2)}s")
except Exception as e:
logger.error("错误: %s", str(e), exc_info=True)

View File

@@ -1,3 +1,4 @@
# ai_providers/ai_chatgpt.py
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
@@ -5,119 +6,145 @@ import logging
import base64
import os
from datetime import datetime
import time # 引入 time 模块
import httpx
from openai import APIConnectionError, APIError, AuthenticationError, OpenAI
# 引入 MessageSummary 类型提示 (如果需要更严格的类型检查)
try:
from function.func_summary import MessageSummary
except ImportError:
MessageSummary = object # Fallback if import fails or for simplified typing
class ChatGPT():
def __init__(self, conf: dict) -> None:
# ---- 修改 __init__ ----
def __init__(self, conf: dict, message_summary_instance: MessageSummary = None, bot_wxid: str = None) -> None:
key = conf.get("key")
api = conf.get("api")
proxy = conf.get("proxy")
prompt = conf.get("prompt")
self.model = conf.get("model", "gpt-3.5-turbo")
# ---- 新增:读取最大历史消息数配置 ----
self.max_history_messages = conf.get("max_history_messages", 10) # 读取配置默认10条
# ---- 新增结束 ----
self.LOG = logging.getLogger("ChatGPT")
# ---- 存储传入的实例和wxid ----
self.message_summary = message_summary_instance
self.bot_wxid = bot_wxid
if not self.message_summary:
self.LOG.warning("MessageSummary 实例未提供给 ChatGPT上下文功能将不可用")
if not self.bot_wxid:
self.LOG.warning("bot_wxid 未提供给 ChatGPT可能无法正确识别机器人自身消息")
# ---- 存储结束 ----
if proxy:
self.client = OpenAI(api_key=key, base_url=api, http_client=httpx.Client(proxy=proxy))
else:
self.client = OpenAI(api_key=key, base_url=api)
self.conversation_list = {}
self.system_content_msg = {"role": "system", "content": prompt}
# 确认是否使用支持视觉的模型
# ---- 移除 self.conversation_list ----
# self.conversation_list = {}
# ---- 移除结束 ----
self.system_content_msg = {"role": "system", "content": prompt if prompt else "You are a helpful assistant."} # 提供默认值
self.support_vision = self.model == "gpt-4-vision-preview" or self.model == "gpt-4o" or "-vision" in self.model
# ---- __init__ 修改结束 ----
def __repr__(self):
return 'ChatGPT'
@staticmethod
def value_check(conf: dict) -> bool:
# 不再检查 prompt因为可以没有默认 prompt
if conf:
if conf.get("key") and conf.get("api") and conf.get("prompt"):
# ---- 修改:也检查 max_history_messages (虽然有默认值) ----
if conf.get("key") and conf.get("api"): # and conf.get("max_history_messages") is not None: # 如果需要强制配置
return True
return False
# ---- 修改 get_answer ----
def get_answer(self, question: str, wxid: str, system_prompt_override=None) -> str:
# wxid或者roomid,个人时为微信id群消息时为群id
# 检查是否是新对话
is_new_conversation = wxid not in self.conversation_list
# 保存临时系统提示的状态
temp_system_used = False
original_prompt = None
if system_prompt_override:
# 只有新对话才临时修改系统提示
if is_new_conversation:
# 临时保存原始系统提示,以便可以恢复
original_prompt = self.system_content_msg["content"]
# 设置临时系统提示
self.system_content_msg["content"] = system_prompt_override
temp_system_used = True
self.LOG.debug(f"为新对话 {wxid} 临时设置系统提示")
else:
# 对于已存在的对话我们将在API调用时临时使用覆盖提示而不修改对话历史
self.LOG.debug(f"对话 {wxid} 已存在系统提示覆盖将仅用于本次API调用")
# 添加用户问题到对话历史
self.updateMessage(wxid, question, "user")
# 如果修改了系统提示,现在恢复它
if temp_system_used and original_prompt is not None:
self.system_content_msg["content"] = original_prompt
self.LOG.debug(f"已恢复默认系统提示")
# ---- 移除 #清除对话 逻辑 ----
# ... (代码已移除) ...
# ---- 移除结束 ----
# ---- 获取并格式化数据库历史记录 ----
api_messages = []
# 1. 添加系统提示
effective_system_prompt = system_prompt_override if system_prompt_override else self.system_content_msg["content"]
if effective_system_prompt: # 确保有内容才添加
api_messages.append({"role": "system", "content": effective_system_prompt})
# 添加当前时间提示(可选,但原代码有)
now_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
time_mk = "Current time is: " # 或者其他合适的提示
api_messages.append({"role": "system", "content": f"{time_mk}{now_time}"})
# 2. 获取并格式化历史消息
if self.message_summary and self.bot_wxid:
history = self.message_summary.get_messages(wxid)
# ---- 新增:限制历史消息数量 ----
if self.max_history_messages is not None and self.max_history_messages > 0:
history = history[-self.max_history_messages:] # 取最新的 N 条
elif self.max_history_messages == 0: # 如果设置为0则不包含历史
history = []
# ---- 新增结束 ----
for msg in history:
role = "assistant" if msg.get("sender_wxid") == self.bot_wxid else "user"
formatted_content = msg.get('content', '')
if formatted_content: # 避免添加空内容
api_messages.append({"role": role, "content": formatted_content})
else:
self.LOG.warning(f"无法为 wxid={wxid} 获取历史记录,因为 message_summary 或 bot_wxid 未设置。")
# 3. 添加当前用户问题
if question: # 确保问题非空
api_messages.append({"role": "user", "content": question})
# ---- 获取和格式化结束 ----
rsp = ""
try:
# 准备API调用的消息列表
api_messages = []
# 对于已存在的对话,临时应用系统提示覆盖(如果有)
if not is_new_conversation and system_prompt_override:
# 第一个消息可能是系统提示
has_system = self.conversation_list[wxid][0]["role"] == "system"
# 使用临时系统提示替代原始系统提示
if has_system:
# 复制除了系统提示外的所有消息
api_messages = [{"role": "system", "content": system_prompt_override}]
api_messages.extend(self.conversation_list[wxid][1:])
else:
# 如果没有系统提示,添加一个
api_messages = [{"role": "system", "content": system_prompt_override}]
api_messages.extend(self.conversation_list[wxid])
else:
# 对于新对话或没有临时系统提示的情况,使用原始对话历史
api_messages = self.conversation_list[wxid]
# o系列模型不支持自定义temperature只能使用默认值1
# ---- 使用格式化后的 api_messages ----
params = {
"model": self.model,
"messages": api_messages
"messages": api_messages # 使用从数据库构建的消息列表
}
# 只有非o系列模型才设置temperature
if not self.model.startswith("o"):
params["temperature"] = 0.2
ret = self.client.chat.completions.create(**params)
rsp = ret.choices[0].message.content
rsp = rsp[2:] if rsp.startswith("\n\n") else rsp
rsp = rsp.replace("\n\n", "\n")
self.updateMessage(wxid, rsp, "assistant")
# ---- 移除 updateMessage 调用 ----
# ... (代码已移除) ...
# ---- 移除结束 ----
except AuthenticationError:
self.LOG.error("OpenAI API 认证失败,请检查 API 密钥是否正确")
rsp = "API认证失败"
except APIConnectionError:
self.LOG.error("无法连接到 OpenAI API请检查网络连接")
rsp = "网络连接错误"
except APIError as e1:
self.LOG.error(f"OpenAI API 返回了错误:{str(e1)}")
rsp = "无法从 ChatGPT 获得答案"
rsp = f"API错误: {str(e1)}"
except Exception as e0:
self.LOG.error(f"发生未知错误:{str(e0)}")
rsp = "无法从 ChatGPT 获得答案"
rsp = "发生未知错误"
return rsp
# ---- get_answer 修改结束 ----
def encode_image_to_base64(self, image_path: str) -> str:
"""将图片文件转换为Base64编码
@@ -148,21 +175,21 @@ class ChatGPT():
if not self.support_vision:
self.LOG.error(f"当前模型 {self.model} 不支持图片理解请使用gpt-4-vision-preview或gpt-4o")
return "当前模型不支持图片理解功能请联系管理员配置支持视觉的模型如gpt-4-vision-preview或gpt-4o"
if not os.path.exists(image_path):
self.LOG.error(f"图片文件不存在: {image_path}")
return "无法读取图片文件"
try:
base64_image = self.encode_image_to_base64(image_path)
if not base64_image:
return "图片编码失败"
# 构建带有图片的消息
# 构建带有图片的消息 (这里不使用历史记录)
messages = [
{"role": "system", "content": "你是一个图片分析专家,擅长分析图片内容并提供详细描述。"},
{"role": "system", "content": "你是一个图片分析专家,擅长分析图片内容并提供详细描述。"}, # 可以使用 self.system_content_msg 如果适用
{
"role": "user",
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
@@ -174,25 +201,23 @@ class ChatGPT():
]
}
]
# 使用GPT-4 Vision模型
params = {
"model": self.model,
"messages": messages,
"max_tokens": 1000 # 限制输出长度
"max_tokens": 1000
}
# 支持视觉的模型可能有不同参数要求
if not self.model.startswith("o"):
params["temperature"] = 0.7
response = self.client.chat.completions.create(**params)
description = response.choices[0].message.content
description = description[2:] if description.startswith("\n\n") else description
description = description.replace("\n\n", "\n")
return description
except AuthenticationError:
self.LOG.error("OpenAI API 认证失败,请检查 API 密钥是否正确")
return "API认证失败无法分析图片"
@@ -206,63 +231,13 @@ class ChatGPT():
self.LOG.error(f"分析图片时发生未知错误:{str(e0)}")
return f"处理图片时出错:{str(e0)}"
def updateMessage(self, wxid: str, content: str, role: str) -> None:
now_time = str(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
time_mk = "当需要回答时间时请直接参考回复:"
# 初始化聊天记录,组装系统信息
if wxid not in self.conversation_list.keys():
# 此时self.system_content_msg可能已经被get_answer临时修改
# 但这没关系因为在get_answer结束前会恢复
question_ = [
self.system_content_msg,
{"role": "system", "content": "" + time_mk + now_time}
]
self.conversation_list[wxid] = question_
# 当前问题或回答
content_message = {"role": role, "content": content}
self.conversation_list[wxid].append(content_message)
# 更新时间标记
for cont in self.conversation_list[wxid]:
if cont["role"] != "system":
continue
if cont["content"].startswith(time_mk):
cont["content"] = time_mk + now_time
# 控制对话历史长度
# 只存储10条记录超过滚动清除
max_history = 12 # 包括1个系统提示和1个时间标记
i = len(self.conversation_list[wxid])
if i > max_history:
# 计算需要删除多少条记录
if self.conversation_list[wxid][0]["role"] == "system" and self.conversation_list[wxid][1]["role"] == "system":
# 如果前两条都是系统消息,保留它们,删除较早的用户和助手消息
to_delete = i - max_history
del self.conversation_list[wxid][2:2+to_delete]
self.LOG.debug(f"滚动清除微信记录:{wxid},删除了{to_delete}条历史消息")
else:
# 如果结构不符合预期,简单地保留最近的消息
self.conversation_list[wxid] = self.conversation_list[wxid][-max_history:]
self.LOG.debug(f"滚动清除微信记录:{wxid},只保留最近{max_history}条消息")
# ---- 移除 updateMessage ----
# ... (代码已移除) ...
# ---- 移除结束 ----
if __name__ == "__main__":
from configuration import Config
config = Config().CHATGPT
if not config:
exit(0)
chat = ChatGPT(config)
while True:
q = input(">>> ")
try:
time_start = datetime.now() # 记录开始时间
print(chat.get_answer(q, "wxid"))
time_end = datetime.now() # 记录结束时间
print(f"{round((time_end - time_start).total_seconds(), 2)}s") # 计算的时间差为程序的执行时间,单位为秒/s
except Exception as e:
print(e)
# --- 测试代码需要调整 ---
# 需要模拟 MessageSummary 和提供 bot_wxid 才能测试
print("请注意:直接运行此文件进行测试需要模拟 MessageSummary 并提供 bot_wxid。")
pass # 避免直接运行时出错

View File

@@ -1,164 +1,139 @@
# ai_providers/ai_deepseek.py
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
import logging
from datetime import datetime
import time # 引入 time 模块
import httpx
from openai import APIConnectionError, APIError, AuthenticationError, OpenAI
# 引入 MessageSummary 类型提示
try:
from function.func_summary import MessageSummary
except ImportError:
MessageSummary = object
class DeepSeek():
def __init__(self, conf: dict) -> None:
# ---- 修改 __init__ ----
def __init__(self, conf: dict, message_summary_instance: MessageSummary = None, bot_wxid: str = None) -> None:
key = conf.get("key")
api = conf.get("api", "https://api.deepseek.com")
proxy = conf.get("proxy")
prompt = conf.get("prompt")
self.model = conf.get("model", "deepseek-chat")
# ---- 新增:读取最大历史消息数配置 ----
self.max_history_messages = conf.get("max_history_messages", 10) # 读取配置默认10条
# ---- 新增结束 ----
self.LOG = logging.getLogger("DeepSeek")
self.reasoning_supported = (self.model == "deepseek-reasoner")
if conf.get("enable_reasoning", False) and not self.reasoning_supported:
self.LOG.warning("思维链功能只在使用 deepseek-reasoner 模型时可用,当前模型不支持此功能")
self.enable_reasoning = conf.get("enable_reasoning", False) and self.reasoning_supported
self.show_reasoning = conf.get("show_reasoning", False) and self.enable_reasoning
# ---- 存储传入的实例和wxid ----
self.message_summary = message_summary_instance
self.bot_wxid = bot_wxid
if not self.message_summary:
self.LOG.warning("MessageSummary 实例未提供给 DeepSeek上下文功能将不可用")
if not self.bot_wxid:
self.LOG.warning("bot_wxid 未提供给 DeepSeek可能无法正确识别机器人自身消息")
# ---- 存储结束 ----
# ---- 移除思维链相关逻辑 ----
# ... (代码已移除) ...
# ---- 移除结束 ----
if proxy:
self.client = OpenAI(api_key=key, base_url=api, http_client=httpx.Client(proxy=proxy))
else:
self.client = OpenAI(api_key=key, base_url=api)
self.conversation_list = {}
self.system_content_msg = {"role": "system", "content": prompt}
# ---- 移除 self.conversation_list ----
# ... (代码已移除) ...
# ---- 移除结束 ----
self.system_content_msg = {"role": "system", "content": prompt if prompt else "You are a helpful assistant."} # 提供默认值
# ---- __init__ 修改结束 ----
def __repr__(self):
return 'DeepSeek'
@staticmethod
def value_check(conf: dict) -> bool:
if conf:
if conf.get("key") and conf.get("prompt"):
# ---- 修改:也检查 max_history_messages (虽然有默认值) ----
if conf.get("key"): # and conf.get("max_history_messages") is not None: # 如果需要强制配置
return True
return False
# ---- 修改 get_answer ----
def get_answer(self, question: str, wxid: str, system_prompt_override=None) -> str:
if question == "#清除对话":
if wxid in self.conversation_list.keys():
del self.conversation_list[wxid]
return "已清除上下文"
if question.lower() in ["#开启思维链", "#enable reasoning"]:
if not self.reasoning_supported:
return "当前模型不支持思维链功能,请使用 deepseek-reasoner 模型"
self.enable_reasoning = True
self.show_reasoning = True
return "已开启思维链模式,将显示完整的推理过程"
if question.lower() in ["#关闭思维链", "#disable reasoning"]:
if not self.reasoning_supported:
return "当前模型不支持思维链功能,无需关闭"
self.enable_reasoning = False
self.show_reasoning = False
return "已关闭思维链模式"
if question.lower() in ["#隐藏思维链", "#hide reasoning"]:
if not self.enable_reasoning:
return "思维链功能未开启,无法设置隐藏/显示"
self.show_reasoning = False
return "已设置隐藏思维链,但模型仍会进行深度思考"
if question.lower() in ["#显示思维链", "#show reasoning"]:
if not self.enable_reasoning:
return "思维链功能未开启,无法设置隐藏/显示"
self.show_reasoning = True
return "已设置显示思维链"
# 初始化对话历史(只在首次时添加系统提示)
if wxid not in self.conversation_list:
self.conversation_list[wxid] = []
# 只有在这里才添加默认的系统提示到对话历史中
if self.system_content_msg["content"]:
self.conversation_list[wxid].append(self.system_content_msg)
# 添加用户问题到对话历史
self.conversation_list[wxid].append({"role": "user", "content": question})
# ---- 移除 #清除对话 和 思维链命令 ----
# ... (代码已移除) ...
# ---- 移除结束 ----
# ---- 获取并格式化数据库历史记录 ----
api_messages = []
# 1. 添加系统提示
effective_system_prompt = system_prompt_override if system_prompt_override else self.system_content_msg["content"]
if effective_system_prompt:
api_messages.append({"role": "system", "content": effective_system_prompt})
# 添加当前时间提示 (可选)
now_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
time_mk = "Current time is: "
api_messages.append({"role": "system", "content": f"{time_mk}{now_time}"})
# 2. 获取并格式化历史消息
if self.message_summary and self.bot_wxid:
history = self.message_summary.get_messages(wxid)
# ---- 新增:限制历史消息数量 ----
if self.max_history_messages is not None and self.max_history_messages > 0:
history = history[-self.max_history_messages:] # 取最新的 N 条
elif self.max_history_messages == 0: # 如果设置为0则不包含历史
history = []
# ---- 新增结束 ----
for msg in history:
role = "assistant" if msg.get("sender_wxid") == self.bot_wxid else "user"
formatted_content = msg.get('content', '')
if formatted_content:
api_messages.append({"role": role, "content": formatted_content})
else:
self.LOG.warning(f"无法为 wxid={wxid} 获取历史记录,因为 message_summary 或 bot_wxid 未设置。")
# 3. 添加当前用户问题
if question:
api_messages.append({"role": "user", "content": question})
# ---- 获取和格式化结束 ----
try:
# 准备API调用的消息列表
api_messages = []
# 检查是否需要使用临时系统提示
if system_prompt_override:
# 如果提供了临时系统提示在API调用时使用它不修改对话历史
api_messages.append({"role": "system", "content": system_prompt_override})
# 添加除了系统提示外的所有历史消息
for msg in self.conversation_list[wxid]:
if msg["role"] != "system":
api_messages.append({"role": msg["role"], "content": msg["content"]})
else:
# 如果没有临时系统提示,使用完整的对话历史
for msg in self.conversation_list[wxid]:
api_messages.append({"role": msg["role"], "content": msg["content"]})
# ---- 使用格式化后的 api_messages ----
response = self.client.chat.completions.create(
model=self.model,
messages=api_messages,
messages=api_messages, # 使用构建的消息列表
stream=False
)
if self.reasoning_supported and self.enable_reasoning:
# deepseek-reasoner模型返回的特殊字段: reasoning_content和content
# 单独处理思维链模式的响应
reasoning_content = getattr(response.choices[0].message, "reasoning_content", None)
content = response.choices[0].message.content
# ---- 移除思维链特殊处理和本地历史更新 ----
# ... (代码已移除) ...
final_response = response.choices[0].message.content
# ... (代码已移除) ...
# ---- 移除结束 ----
if self.show_reasoning and reasoning_content:
final_response = f"🤔思考过程:\n{reasoning_content}\n\n🎉最终答案:\n{content}"
#最好不要删除表情,因为微信内的信息没有办法做自定义显示,这里是为了做两个分隔,来区分思考过程和最终答案!💡
else:
final_response = content
self.conversation_list[wxid].append({"role": "assistant", "content": content})
else:
final_response = response.choices[0].message.content
self.conversation_list[wxid].append({"role": "assistant", "content": final_response})
# 控制对话长度,保留最近的历史记录
# 系统消息(如果有) + 最近9轮对话(问答各算一轮)
max_history = 11
if len(self.conversation_list[wxid]) > max_history:
has_system = self.conversation_list[wxid][0]["role"] == "system"
if has_system:
self.conversation_list[wxid] = [self.conversation_list[wxid][0]] + self.conversation_list[wxid][-(max_history-1):]
else:
self.conversation_list[wxid] = self.conversation_list[wxid][-max_history:]
return final_response
except (APIConnectionError, APIError, AuthenticationError) as e1:
self.LOG.error(f"DeepSeek API 返回了错误:{str(e1)}")
return f"DeepSeek API 返回了错误:{str(e1)}"
except Exception as e0:
self.LOG.error(f"发生未知错误:{str(e0)}")
return "抱歉,处理您的请求时出现了错误"
# ---- get_answer 修改结束 ----
if __name__ == "__main__":
from configuration import Config
config = Config().DEEPSEEK
if not config:
exit(0)
chat = DeepSeek(config)
while True:
q = input(">>> ")
try:
time_start = datetime.now()
print(chat.get_answer(q, "wxid"))
time_end = datetime.now()
print(f"{round((time_end - time_start).total_seconds(), 2)}s")
except Exception as e:
print(e)
# --- 测试代码需要调整 ---
print("请注意:直接运行此文件进行测试需要模拟 MessageSummary 并提供 bot_wxid。")
pass

View File

@@ -1,81 +0,0 @@
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
import logging
from datetime import datetime
import re
import ollama
class Ollama():
def __init__(self, conf: dict) -> None:
enable = conf.get("enable")
self.model = conf.get("model")
self.prompt = conf.get("prompt")
self.LOG = logging.getLogger("Ollama")
self.conversation_list = {}
def __repr__(self):
return 'Ollama'
@staticmethod
def value_check(conf: dict) -> bool:
if conf:
if conf.get("enable") and conf.get("model") and conf.get("prompt"):
return True
return False
def get_answer(self, question: str, wxid: str) -> str:
try:
self.conversation_list[wxid]
except KeyError:
res=ollama.generate(model=self.model, prompt=self.prompt, keep_alive="30m")
self.updateMessage(wxid, res["context"], "assistant")
# wxid或者roomid,个人时为微信id群消息时为群id
rsp = ""
try:
res=ollama.generate(model=self.model, prompt=question, context=self.conversation_list[wxid], keep_alive="30m")
self.updateMessage(wxid, res["context"], "user")
res_message = res["response"]
# 去除<think>标签对与内部内容
# res_message = res_message.split("</think>")[-1]
# 去除开头的\n和空格
# return res_message[2:]
return res_message
except Exception as e0:
self.LOG.error(f"发生未知错误:{str(e0)}", exc_info=True)
return rsp
def updateMessage(self, wxid: str, context: str, role: str) -> None:
# 当前问题
self.conversation_list[wxid] = context
if __name__ == "__main__":
from configuration import Config
# 设置测试用的日志配置
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s'
)
config = Config().OLLAMA
if not config:
exit(0)
chat = Ollama(config)
while True:
q = input(">>> ")
try:
time_start = datetime.now() # 记录开始时间
logger = logging.getLogger(__name__)
logger.info(chat.get_answer(q, "wxid"))
time_end = datetime.now() # 记录结束时间
logger.info(f"{round((time_end - time_start).total_seconds(), 2)}s") # 计算的时间差为程序的执行时间,单位为秒/s
except Exception as e:
logger.error(f"错误: {e}", exc_info=True)

View File

@@ -1,49 +0,0 @@
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
import logging
import requests
from random import randint
class TigerBot:
def __init__(self, tbconf=None) -> None:
self.LOG = logging.getLogger(__file__)
self.tburl = "https://api.tigerbot.com/bot-service/ai_service/gpt"
self.tbheaders = {"Authorization": "Bearer " + tbconf["key"]}
self.tbmodel = tbconf["model"]
self.fallback = ["", "快滚", "赶紧滚"]
def __repr__(self):
return 'TigerBot'
@staticmethod
def value_check(conf: dict) -> bool:
if conf:
return all(conf.values())
return False
def get_answer(self, msg: str, sender: str = None) -> str:
payload = {
"text": msg,
"modelVersion": self.tbmodel
}
rsp = ""
try:
rsp = requests.post(self.tburl, headers=self.tbheaders, json=payload).json()
rsp = rsp["data"]["result"][0]
except Exception as e:
self.LOG.error(f"{e}: {payload}\n{rsp}")
idx = randint(0, len(self.fallback) - 1)
rsp = self.fallback[idx]
return rsp
if __name__ == "__main__":
from configuration import Config
c = Config()
tbot = TigerBot(c.TIGERBOT)
rsp = tbot.get_answer("你还活着?")
print(rsp)

View File

@@ -1,38 +0,0 @@
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
from sparkdesk_web.core import SparkWeb
class XinghuoWeb:
def __init__(self, xhconf=None) -> None:
self._sparkWeb = SparkWeb(
cookie=xhconf["cookie"],
fd=xhconf["fd"],
GtToken=xhconf["GtToken"],
)
self._chat = self._sparkWeb.create_continuous_chat()
# 如果有提示词
if xhconf["prompt"]:
self._chat.chat(xhconf["prompt"])
def __repr__(self):
return 'XinghuoWeb'
@staticmethod
def value_check(conf: dict) -> bool:
if conf:
return all(conf.values())
return False
def get_answer(self, msg: str, sender: str = None) -> str:
answer = self._chat.chat(msg)
return answer
if __name__ == "__main__":
from configuration import Config
c = Config()
xinghuo = XinghuoWeb(c.XINGHUO_WEB)
rsp = xinghuo.get_answer("你还活着?")
print(rsp)

View File

@@ -1,46 +0,0 @@
from zhipuai import ZhipuAI
class ZhiPu():
def __init__(self, conf: dict) -> None:
self.api_key = conf.get("api_key")
self.model = conf.get("model", "glm-4") # 默认使用 glm-4 模型
self.client = ZhipuAI(api_key=self.api_key)
self.converstion_list = {}
@staticmethod
def value_check(conf: dict) -> bool:
if conf and conf.get("api_key"):
return True
return False
def __repr__(self):
return 'ZhiPu'
def get_answer(self, msg: str, wxid: str, **args) -> str:
self._update_message(wxid, str(msg), "user")
response = self.client.chat.completions.create(
model=self.model,
messages=self.converstion_list[wxid]
)
resp_msg = response.choices[0].message
answer = resp_msg.content
self._update_message(wxid, answer, "assistant")
return answer
def _update_message(self, wxid: str, msg: str, role: str) -> None:
if wxid not in self.converstion_list.keys():
self.converstion_list[wxid] = []
content = {"role": role, "content": str(msg)}
self.converstion_list[wxid].append(content)
if __name__ == "__main__":
from configuration import Config
config = Config().ZHIPU
if not config:
exit(0)
zhipu = ZhiPu(config)
rsp = zhipu.get_answer("你好")
print(rsp)

View File

@@ -1,45 +0,0 @@
# ChatGLM3 集成使用说明
1. 需要取消配置中 chatglm 的注释, 并配置对应信息,使用 [ChatGLM3](https://github.com/THUDM/ChatGLM3), 启用最新版 ChatGLM3 根目录下 openai_api.py 获取 api 地址:
```yaml
# 如果要使用 chatglm取消下面的注释并填写相关内容
chatglm:
key: sk-012345678901234567890123456789012345678901234567 # 根据需要自己做key校验
api: http://localhost:8000/v1 # 根据自己的chatglm地址修改
proxy: # 如果你在国内你可能需要魔法大概长这样http://域名或者IP地址:端口号
prompt: 你是智能聊天机器人,你叫小薇 # 根据需要对角色进行设定
file_path: F:/Pictures/temp #设定生成图片和代码使用的文件夹路径
```
2. 修改 chatglm/tool_registry.py 工具里面的一下配置comfyUI 地址或者根据需要自己配置一些工具,函数名上需要加 @register_tool, 函数里面需要叫'''函数描述''',参数需要用 Annotated[str,'',True] 修饰,分别是类型,参数说明,是否必填,再加 ->加上对应的返回类型
```python
@register_tool
def get_confyui_image(prompt: Annotated[str, '要生成图片的提示词,注意必须是英文', True]) -> dict:
'''
生成图片
'''
with open("func_chatglm\\base.json", "r", encoding="utf-8") as f:
data2 = json.load(f)
data2['prompt']['3']['inputs']['seed'] = ''.join(
random.sample('123456789012345678901234567890', 14))
# 模型名称
data2['prompt']['4']['inputs']['ckpt_name'] = 'chilloutmix_NiPrunedFp32Fix.safetensors'
data2['prompt']['6']['inputs']['text'] = prompt # 正向提示词
# data2['prompt']['7']['inputs']['text']='' #反向提示词
cfui = ComfyUIApi(server_address="127.0.0.1:8188") # 根据自己comfyUI地址修改
images = cfui.get_images(data2['prompt'])
return {'res': images[0]['image'], 'res_type': 'image', 'filename': images[0]['filename']}
```
3. 使用 Code Interpreter 还需要安装 Jupyter 内核,默认名称叫 chatglm3
```
ipython kernel install --name chatglm3 --user
```
如果名称需要自定义可以配置系统环境变量IPYKERNEL 或者修改 chatglm/code_kernel.py
```
IPYKERNEL = os.environ.get('IPYKERNEL', 'chatglm3')
```
4. 启动后,发送 #帮助 可以查看 模式和常用指令

View File

@@ -1,13 +0,0 @@
import sys
class UnsupportedPythonVersionError(Exception):
def __init__(self, error_msg: str):
super().__init__(error_msg)
python_version_info = sys.version_info
if not sys.version_info >= (3, 9):
msg = "当前Python版本: " + ".".join(map(str, python_version_info[:3])) + (', 需要python版本 >= 3.9, 前往下载: '
'https://www.python.org/downloads/')
raise UnsupportedPythonVersionError(msg)

View File

@@ -1,88 +0,0 @@
{
"prompt": {
"3": {
"inputs": {
"seed": 1000573256060686,
"steps": 20,
"cfg": 8,
"sampler_name": "euler",
"scheduler": "normal",
"denoise": 1,
"model": [
"4",
0
],
"positive": [
"6",
0
],
"negative": [
"7",
0
],
"latent_image": [
"5",
0
]
},
"class_type": "KSampler"
},
"4": {
"inputs": {
"ckpt_name": "(修复)512-inpainting-ema.safetensors"
},
"class_type": "CheckpointLoaderSimple"
},
"5": {
"inputs": {
"width": 512,
"height": 512,
"batch_size": 1
},
"class_type": "EmptyLatentImage"
},
"6": {
"inputs": {
"text": "beautiful scenery nature glass bottle landscape, , purple galaxy bottle,dress, ",
"clip": [
"4",
1
]
},
"class_type": "CLIPTextEncode"
},
"7": {
"inputs": {
"text": "text, watermark",
"clip": [
"4",
1
]
},
"class_type": "CLIPTextEncode"
},
"8": {
"inputs": {
"samples": [
"3",
0
],
"vae": [
"4",
2
]
},
"class_type": "VAEDecode"
},
"9": {
"inputs": {
"filename_prefix": "ComfyUI",
"images": [
"8",
0
]
},
"class_type": "SaveImage"
}
}
}

View File

@@ -1,203 +0,0 @@
import base64
import os
import queue
import re
import logging
from io import BytesIO
from subprocess import PIPE
from typing import Optional, Union
import jupyter_client
from PIL import Image
# 获取模块级 logger
logger = logging.getLogger(__name__)
IPYKERNEL = os.environ.get('IPYKERNEL', 'chatglm3')
class CodeKernel(object):
def __init__(self,
kernel_name='kernel',
kernel_id=None,
kernel_config_path="",
python_path=None,
ipython_path=None,
init_file_path="./startup.py",
verbose=1):
self.kernel_name = kernel_name
self.kernel_id = kernel_id
self.kernel_config_path = kernel_config_path
self.python_path = python_path
self.ipython_path = ipython_path
self.init_file_path = init_file_path
self.verbose = verbose
if python_path is None and ipython_path is None:
env = None
else:
env = {"PATH": self.python_path + ":$PATH",
"PYTHONPATH": self.python_path}
# Initialize the backend kernel
self.kernel_manager = jupyter_client.KernelManager(kernel_name=IPYKERNEL,
connection_file=self.kernel_config_path,
exec_files=[
self.init_file_path],
env=env)
if self.kernel_config_path:
self.kernel_manager.load_connection_file()
self.kernel_manager.start_kernel(stdout=PIPE, stderr=PIPE)
logger.info("Backend kernel started with the configuration: %s",
self.kernel_config_path)
else:
self.kernel_manager.start_kernel(stdout=PIPE, stderr=PIPE)
logger.info("Backend kernel started with the configuration: %s",
self.kernel_manager.connection_file)
if verbose:
logger.debug(self.kernel_manager.get_connection_info())
# Initialize the code kernel
self.kernel = self.kernel_manager.blocking_client()
# self.kernel.load_connection_file()
self.kernel.start_channels()
logger.info("Code kernel started.")
def execute(self, code):
self.kernel.execute(code)
try:
shell_msg = self.kernel.get_shell_msg(timeout=40)
io_msg_content = self.kernel.get_iopub_msg(timeout=40)['content']
while True:
msg_out = io_msg_content
# Poll the message
try:
io_msg_content = self.kernel.get_iopub_msg(timeout=40)[
'content']
if 'execution_state' in io_msg_content and io_msg_content['execution_state'] == 'idle':
break
except queue.Empty:
break
return shell_msg, msg_out
except Exception as e:
logger.error("执行代码时出错: %s", str(e), exc_info=True)
return None
def execute_interactive(self, code, verbose=False):
shell_msg = self.kernel.execute_interactive(code)
if shell_msg is queue.Empty:
if verbose:
logger.warning("Timeout waiting for shell message.")
self.check_msg(shell_msg, verbose=verbose)
return shell_msg
def inspect(self, code, verbose=False):
msg_id = self.kernel.inspect(code)
shell_msg = self.kernel.get_shell_msg(timeout=30)
if shell_msg is queue.Empty:
if verbose:
logger.warning("Timeout waiting for shell message.")
self.check_msg(shell_msg, verbose=verbose)
return shell_msg
def get_error_msg(self, msg, verbose=False) -> Optional[str]:
if msg['content']['status'] == 'error':
try:
error_msg = msg['content']['traceback']
except BaseException:
try:
error_msg = msg['content']['traceback'][-1].strip()
except BaseException:
error_msg = "Traceback Error"
if verbose:
logger.error("Error: %s", error_msg)
return error_msg
return None
def check_msg(self, msg, verbose=False):
status = msg['content']['status']
if status == 'ok':
if verbose:
logger.info("Execution succeeded.")
elif status == 'error':
for line in msg['content']['traceback']:
if verbose:
logger.error(line)
def shutdown(self):
# Shutdown the backend kernel
self.kernel_manager.shutdown_kernel()
logger.info("Backend kernel shutdown.")
# Shutdown the code kernel
self.kernel.shutdown()
logger.info("Code kernel shutdown.")
def restart(self):
# Restart the backend kernel
self.kernel_manager.restart_kernel()
# logger.info("Backend kernel restarted.")
def interrupt(self):
# Interrupt the backend kernel
self.kernel_manager.interrupt_kernel()
# logger.info("Backend kernel interrupted.")
def is_alive(self):
return self.kernel.is_alive()
def b64_2_img(data):
buff = BytesIO(base64.b64decode(data))
return Image.open(buff)
def clean_ansi_codes(input_string):
ansi_escape = re.compile(r'(\x9B|\x1B\[|\u001b\[)[0-?]*[ -/]*[@-~]')
return ansi_escape.sub('', input_string)
def execute(code, kernel: CodeKernel) -> tuple[str, Union[str, Image.Image]]:
res = ""
res_type = None
code = code.replace("<|observation|>", "")
code = code.replace("<|assistant|>interpreter", "")
code = code.replace("<|assistant|>", "")
code = code.replace("<|user|>", "")
code = code.replace("<|system|>", "")
msg, output = kernel.execute(code)
if msg['metadata']['status'] == "timeout":
return res_type, 'Timed out'
elif msg['metadata']['status'] == 'error':
return res_type, clean_ansi_codes('\n'.join(kernel.get_error_msg(msg, verbose=True)))
if 'text' in output:
res_type = "text"
res = output['text']
elif 'data' in output:
for key in output['data']:
if 'image/png' in key:
res_type = "image"
res = output['data'][key]
break
elif 'text/plain' in key:
res_type = "text"
res = output['data'][key]
if res_type == "image":
return res_type, b64_2_img(res)
elif res_type == "text" or res_type == "traceback":
res = res
return res_type, res
def extract_code(text: str) -> str:
pattern = r'```([^\n]*)\n(.*?)```'
matches = re.findall(pattern, text, re.DOTALL)
return matches[-1][1]

View File

@@ -1,186 +0,0 @@
# This is an example that uses the websockets api to know when a prompt execution is done
# Once the prompt execution is done it downloads the images using the /history endpoint
import io
import json
import random
import urllib
import uuid
import requests
# NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import websocket
from PIL import Image
class ComfyUIApi():
def __init__(self, server_address="127.0.0.1:8188"):
self.server_address = server_address
self.client_id = str(uuid.uuid4())
self.ws = websocket.WebSocket()
self.ws.connect(
"ws://{}/ws?clientId={}".format(server_address, self.client_id))
def queue_prompt(self, prompt):
p = {"prompt": prompt, "client_id": self.client_id}
data = json.dumps(p).encode('utf-8')
req = requests.post(
"http://{}/prompt".format(self.server_address), data=data)
print(req.text)
return json.loads(req.text)
def get_image(self, filename, subfolder, folder_type):
data = {"filename": filename,
"subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with requests.get("http://{}/view?{}".format(self.server_address, url_values)) as response:
image = Image.open(io.BytesIO(response.content))
return image
def get_image_url(self, filename, subfolder, folder_type):
data = {"filename": filename,
"subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
return "http://{}/view?{}".format(self.server_address, url_values)
def get_history(self, prompt_id):
with requests.get("http://{}/history/{}".format(self.server_address, prompt_id)) as response:
return json.loads(response.text)
def get_images(self, prompt, isUrl=False):
prompt_id = self.queue_prompt(prompt)['prompt_id']
output_images = []
while True:
out = self.ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message['type'] == 'executing':
data = message['data']
if data['node'] is None and data['prompt_id'] == prompt_id:
break # Execution is done
else:
continue # previews are binary data
history = self.get_history(prompt_id)[prompt_id]
for o in history['outputs']:
for node_id in history['outputs']:
node_output = history['outputs'][node_id]
if 'images' in node_output:
for image in node_output['images']:
image_data = self.get_image_url(image['filename'], image['subfolder'], image['type']) if isUrl else self.get_image(
image['filename'], image['subfolder'], image['type'])
image['image'] = image_data
output_images.append(image)
return output_images
prompt_text = """
{
"3": {
"class_type": "KSampler",
"inputs": {
"cfg": 8,
"denoise": 1,
"latent_image": [
"5",
0
],
"model": [
"4",
0
],
"negative": [
"7",
0
],
"positive": [
"6",
0
],
"sampler_name": "euler",
"scheduler": "normal",
"seed": 8566257,
"steps": 20
}
},
"4": {
"class_type": "CheckpointLoaderSimple",
"inputs": {
"ckpt_name": "chilloutmix_NiPrunedFp32Fix.safetensors"
}
},
"5": {
"class_type": "EmptyLatentImage",
"inputs": {
"batch_size": 1,
"height": 512,
"width": 512
}
},
"6": {
"class_type": "CLIPTextEncode",
"inputs": {
"clip": [
"4",
1
],
"text": "masterpiece best quality girl"
}
},
"7": {
"class_type": "CLIPTextEncode",
"inputs": {
"clip": [
"4",
1
],
"text": "bad hands"
}
},
"8": {
"class_type": "VAEDecode",
"inputs": {
"samples": [
"3",
0
],
"vae": [
"4",
2
]
}
},
"9": {
"class_type": "SaveImage",
"inputs": {
"filename_prefix": "ComfyUI",
"images": [
"8",
0
]
}
}
}
"""
if __name__ == '__main__':
prompt = json.loads(prompt_text)
# set the text prompt for our positive CLIPTextEncode
prompt["6"]["inputs"]["text"] = "masterpiece best quality man"
# set the seed for our KSampler node
prompt["3"]["inputs"]["seed"] = ''.join(
random.sample('123456789012345678901234567890', 14))
cfui = ComfyUIApi()
images = cfui.get_images(prompt)
# Commented out code to display the output images:
for node_id in images:
for image_data in images[node_id]:
import io
from PIL import Image
image = Image.open(io.BytesIO(image_data))
image.show()

View File

@@ -1,167 +0,0 @@
import inspect
import json
import random
import re
import traceback
from copy import deepcopy
from datetime import datetime
from types import GenericAlias
from typing import Annotated, get_origin
from ai_providers.chatglm.comfyUI_api import ComfyUIApi
from function.func_news import News
from zhdate import ZhDate
_TOOL_HOOKS = {}
_TOOL_DESCRIPTIONS = {}
def extract_code(text: str) -> str:
pattern = r'```([^\n]*)\n(.*?)```'
matches = re.findall(pattern, text, re.DOTALL)
return matches[-1][1]
def register_tool(func: callable):
tool_name = func.__name__
tool_description = inspect.getdoc(func).strip()
python_params = inspect.signature(func).parameters
tool_params = []
for name, param in python_params.items():
annotation = param.annotation
if annotation is inspect.Parameter.empty:
raise TypeError(f"Parameter `{name}` missing type annotation")
if get_origin(annotation) != Annotated:
raise TypeError(
f"Annotation type for `{name}` must be typing.Annotated")
typ, (description, required) = annotation.__origin__, annotation.__metadata__
typ: str = str(typ) if isinstance(typ, GenericAlias) else typ.__name__
if not isinstance(description, str):
raise TypeError(f"Description for `{name}` must be a string")
if not isinstance(required, bool):
raise TypeError(f"Required for `{name}` must be a bool")
tool_params.append({
"name": name,
"description": description,
"type": typ,
"required": required
})
tool_def = {
"name": tool_name,
"description": tool_description,
"parameters": tool_params
}
# print("[registered tool] " + pformat(tool_def))
_TOOL_HOOKS[tool_name] = func
_TOOL_DESCRIPTIONS[tool_name] = tool_def
return func
def dispatch_tool(tool_name: str, tool_params: dict) -> str:
if tool_name not in _TOOL_HOOKS:
return f"Tool `{tool_name}` not found. Please use a provided tool."
tool_call = _TOOL_HOOKS[tool_name]
try:
ret = tool_call(**tool_params)
except BaseException:
ret = traceback.format_exc()
return ret
def get_tools() -> dict:
return deepcopy(_TOOL_DESCRIPTIONS)
# Tool Definitions
# @register_tool
# def random_number_generator(
# seed: Annotated[int, 'The random seed used by the generator', True],
# range: Annotated[tuple[int, int], 'The range of the generated numbers', True],
# ) -> int:
# """
# Generates a random number x, s.t. range[0] <= x < range[1]
# """
# if not isinstance(seed, int):
# raise TypeError("Seed must be an integer")
# if not isinstance(range, tuple):
# raise TypeError("Range must be a tuple")
# if not isinstance(range[0], int) or not isinstance(range[1], int):
# raise TypeError("Range must be a tuple of integers")
# import random
# return random.Random(seed).randint(*range)
@register_tool
def get_weather(
city_name: Annotated[str, 'The name of the city to be queried', True],
) -> str:
"""
Get the current weather for `city_name`
"""
if not isinstance(city_name, str):
raise TypeError("City name must be a string")
key_selection = {
"current_condition": ["temp_C", "FeelsLikeC", "humidity", "weatherDesc", "observation_time"],
}
import requests
try:
resp = requests.get(f"https://wttr.in/{city_name}?format=j1")
resp.raise_for_status()
resp = resp.json()
ret = {k: {_v: resp[k][0][_v] for _v in v}
for k, v in key_selection.items()}
except BaseException:
import traceback
ret = "Error encountered while fetching weather data!\n" + traceback.format_exc()
return str(ret)
@register_tool
def get_confyui_image(prompt: Annotated[str, '要生成图片的提示词,注意必须是英文', True]) -> dict:
'''
生成图片
'''
with open("ai_providers/chatglm/base.json", "r", encoding="utf-8") as f:
data2 = json.load(f)
data2['prompt']['3']['inputs']['seed'] = ''.join(
random.sample('123456789012345678901234567890', 14))
# 模型名称
data2['prompt']['4']['inputs']['ckpt_name'] = 'chilloutmix_NiPrunedFp32Fix.safetensors'
data2['prompt']['6']['inputs']['text'] = prompt # 正向提示词
# data2['prompt']['7']['inputs']['text']='' #反向提示词
cfui = ComfyUIApi(server_address="127.0.0.1:8188") # 根据自己comfyUI地址修改
images = cfui.get_images(data2['prompt'])
return {'res': images[0]['image'], 'res_type': 'image', 'filename': images[0]['filename']}
@register_tool
def get_news() -> str:
'''
获取最新新闻
'''
news = News()
return news.get_important_news()
@register_tool
def get_time() -> str:
'''
获取当前日期,时间,农历日期,星期几
'''
time = datetime.now()
date2 = ZhDate.from_datetime(time)
week_list = ["星期一", "星期二", "星期三", "星期四", "星期五", "星期六", "星期日"]
return '{} {} {}'.format(time.strftime("%Y年%m月%d%H:%M:%S"), week_list[time.weekday()], '农历:' + date2.chinese())
if __name__ == "__main__":
print(dispatch_tool("get_weather", {"city_name": "beijing"}))
print(get_tools())

View File

@@ -9,8 +9,6 @@ from function.func_duel import DuelRankSystem
# 导入AI模型
from ai_providers.ai_deepseek import DeepSeek
from ai_providers.ai_chatgpt import ChatGPT
from ai_providers.ai_chatglm import ChatGLM
from ai_providers.ai_ollama import Ollama
# 前向引用避免循环导入
from typing import TYPE_CHECKING
@@ -129,29 +127,6 @@ def handle_reset_memory(ctx: 'MessageContext', match: Optional[Match]) -> bool:
result = "✅ 已重置ChatGPT对话记忆保留系统提示开始新的对话"
else:
result = f"⚠️ {model_name} 对话记忆已为空,无需重置"
elif isinstance(chat_model, ChatGLM):
# ChatGLM模型
if hasattr(chat_model, 'chat_type') and chat_id in chat_model.chat_type:
chat_type = chat_model.chat_type[chat_id]
# 保留系统提示,删除对话历史
if chat_type in chat_model.conversation_list[chat_id]:
chat_model.conversation_list[chat_id][chat_type] = []
if ctx.logger: ctx.logger.info(f"已重置ChatGLM对话记忆: {chat_id}")
result = "✅ 已重置ChatGLM对话记忆开始新的对话"
else:
result = f"⚠️ 未找到与 {model_name} 的对话记忆,无需重置"
else:
result = f"⚠️ 未找到与 {model_name} 的对话记忆,无需重置"
elif isinstance(chat_model, Ollama):
# Ollama模型
if chat_id in chat_model.conversation_list:
chat_model.conversation_list[chat_id] = []
if ctx.logger: ctx.logger.info(f"已重置Ollama对话记忆: {chat_id}")
result = "✅ 已重置Ollama对话记忆开始新的对话"
else:
result = f"⚠️ 未找到与 {model_name} 的对话记忆,无需重置"
else:
# 通用处理方式:直接删除对话记录

View File

@@ -54,28 +54,23 @@ groups:
models:
# 模型ID参考
# 0: 自动选择第一个可用模型
# 1: TigerBot
# 2: ChatGPT
# 3: 讯飞星火
# 4: ChatGLM
# 5: BardAssistant/Gemini
# 6: 智谱ZhiPu
# 7: Ollama
# 8: DeepSeek
# 9: Perplexity
# 1: ChatGPT
# 2: DeepSeek
default: 0 # 默认模型ID0表示自动选择第一个可用模型
# 群聊映射
mapping:
- room_id: example12345@chatroom
model: 2 # 对应ChatType.CHATGPT
model: 2
- room_id: example12345@chatroom
model: 7 # 对应ChatType.OLLAMA
model: 7
# 私聊映射
private_mapping:
- wxid: filehelper
model: 2 # 对应ChatType.CHATGPT
model: 2
- wxid: wxid_example12345
model: 8 # 对应ChatType.DEEPSEEK
model: 8
MAX_HISTORY: 300 # 记录数据库的消息历史
news:
receivers: ["filehelper"] # 定时新闻接收人roomid 或者 wxid
@@ -96,41 +91,7 @@ chatgpt: # -----chatgpt配置这行不填-----
model: gpt-3.5-turbo # 可选gpt-3.5-turbo、gpt-4、gpt-4-turbo、gpt-4.1-mini、o4-mini
proxy: # 如果你在国内你可能需要魔法大概长这样http://域名或者IP地址:端口号
prompt: 你是智能聊天机器人,你叫 wcferry # 根据需要对角色进行设定
chatglm: # -----chatglm配置这行不填-----
key: # 这个应该不用动
api: http://localhost:8000/v1 # 根据自己的chatglm地址修改
proxy: # 如果你在国内你可能需要魔法大概长这样http://域名或者IP地址:端口号
prompt: 你是智能聊天机器人,你叫小薇 # 根据需要对角色进行设定
file_path: F:/Pictures/temp #设定生成图片和代码使用的文件夹路径
ollama: # -----ollama配置这行不填-----
enable: true # 是否启用 ollama
model: deepseek-r1:1.5b # ollama-7b-sft
prompt: 你是智能聊天机器人,你叫 梅好事 # 根据需要对角色进行设定
file_path: d:/pictures/temp #设定生成图片和代码使用的文件夹路径
tigerbot: # -----tigerbot配置这行不填-----
key: # key
model: # tigerbot-7b-sft
xinghuo_web: # -----讯飞星火web模式api配置这行不填 抓取方式详见文档https://www.bilibili.com/read/cv27066577-----
cookie: # cookie
fd: # fd
GtToken: # GtToken
prompt: 你是智能聊天机器人,你叫 wcferry。请用这个角色回答我的问题 # 根据需要对角色进行设定
bard: # -----bard配置这行不填-----
api_key: # api-key 创建地址https://ai.google.dev/pricing?hl=en创建后复制过来即可
model_name: gemini-pro # 新模型上线后可以选择模型
proxy: http://127.0.0.1:7890 # 如果你在国内你可能需要魔法大概长这样http://域名或者IP地址:端口号
# 提示词尽可能用英文bard对中文提示词的效果不是很理想下方提示词为英语老师的示例请按实际需要修改,默认设置的提示词为谷歌创造的AI大语言模型
# I want you to act as a spoken English teacher and improver. I will speak to you in English and you will reply to me in English to practice my spoken English. I want you to keep your reply neat, limiting the reply to 100 words. I want you to strictly correct my grammar mistakes, typos, and factual errors. I want you to ask me a question in your reply. Now let's start practicing, you could ask me a question first. Remember, I want you to strictly correct my grammar mistakes, typos, and factual errors.
prompt: You am a large language model, trained by Google.
zhipu: # -----zhipu配置这行不填-----
api_key: #api key
model: # 模型类型
max_history_messages: 20 # <--- 添加这一行,设置 ChatGPT 最多回顾 20 条历史消息
deepseek: # -----deepseek配置这行不填-----
#思维链相关功能默认关闭开启后会增加响应时间和消耗更多的token
@@ -140,17 +101,7 @@ deepseek: # -----deepseek配置这行不填-----
prompt: 你是智能聊天机器人,你叫 DeepSeek 助手 # 根据需要对角色进行设定
enable_reasoning: false # 是否启用思维链功能,仅在使用 deepseek-reasoner 模型时有效
show_reasoning: false # 是否在回复中显示思维过程,仅在启用思维链功能时有效
cogview: # -----智谱AI图像生成配置这行不填-----
# 此API请参考 https://www.bigmodel.cn/dev/api/image-model/cogview
enable: False # 是否启用图像生成功能默认关闭将False替换为true则开启此模型可和其他模型同时运行。
api_key: # 智谱API密钥请填入您的API Key
model: cogview-4-250304 # 模型编码可选cogview-4-250304、cogview-4、cogview-3-flash
quality: standard # 生成质量可选standard快速、hd高清
size: 1024x1024 # 图片尺寸,可自定义,需符合条件
trigger_keyword: 牛智谱 # 触发图像生成的关键词
temp_dir: # 临时文件存储目录留空则默认使用项目目录下的zhipuimg文件夹如果要更改例如 D:/Pictures/temp 或 /home/user/temp
fallback_to_chat: true # 当未启用绘画功能时true=将请求发给聊天模型处理false=回复固定的未启用提示信息
max_history_messages: 10 # <--- 添加这一行,设置 DeepSeek 最多回顾 10 条历史消息
aliyun_image: # -----如果要使用阿里云文生图,取消下面的注释并填写相关内容,模型到阿里云百炼找通义万相-文生图2.1-Turbo-----
enable: true # 是否启用阿里文生图功能false为关闭默认开启如果未配置则会将消息发送给聊天大模型

View File

@@ -37,15 +37,8 @@ class Config(object):
self.REPORT_REMINDERS = yconfig["report_reminder"]["receivers"]
self.CHATGPT = yconfig.get("chatgpt", {})
self.OLLAMA = yconfig.get("ollama", {})
self.TIGERBOT = yconfig.get("tigerbot", {})
self.XINGHUO_WEB = yconfig.get("xinghuo_web", {})
self.CHATGLM = yconfig.get("chatglm", {})
self.BardAssistant = yconfig.get("bard", {})
self.ZhiPu = yconfig.get("zhipu", {})
self.DEEPSEEK = yconfig.get("deepseek", {})
self.PERPLEXITY = yconfig.get("perplexity", {})
self.COGVIEW = yconfig.get("cogview", {})
self.ALIYUN_IMAGE = yconfig.get("aliyun_image", {})
self.GEMINI_IMAGE = yconfig.get("gemini_image", {})
self.SEND_RATE_LIMIT = yconfig.get("send_rate_limit", 0)

View File

@@ -4,22 +4,14 @@ from enum import IntEnum, unique
@unique
class ChatType(IntEnum):
# UnKnown = 0 # 未知, 即未设置
TIGER_BOT = 1 # TigerBot
CHATGPT = 2 # ChatGPT
XINGHUO_WEB = 3 # 讯飞星火
CHATGLM = 4 # ChatGLM
BardAssistant = 5 # Google Bard
ZhiPu = 6 # ZhiPu
OLLAMA = 7 # Ollama
DEEPSEEK = 8 # DeepSeek
PERPLEXITY = 9 # Perplexity
CHATGPT = 1 # ChatGPT
DEEPSEEK = 2 # DeepSeek
PERPLEXITY = 3 # Perplexity
@staticmethod
def is_in_chat_types(chat_type: int) -> bool:
if chat_type in [ChatType.TIGER_BOT.value, ChatType.CHATGPT.value,
ChatType.XINGHUO_WEB.value, ChatType.CHATGLM.value,
ChatType.BardAssistant.value, ChatType.ZhiPu.value,
ChatType.OLLAMA.value, ChatType.DEEPSEEK.value,
if chat_type in [ChatType.CHATGPT.value,
ChatType.DEEPSEEK.value,
ChatType.PERPLEXITY.value]:
return True
return False

View File

@@ -8,74 +8,84 @@ from collections import deque
import sqlite3 # 添加sqlite3模块
import os # 用于处理文件路径
from function.func_xml_process import XmlProcessor # 导入XmlProcessor
from commands.registry import COMMANDS # 导入命令列表
# from commands.registry import COMMANDS # 不再需要导入命令列表
class MessageSummary:
"""消息总结功能类 (使用SQLite持久化)
用于记录、管理和生成聊天历史消息的总结
"""
def __init__(self, max_history=300, db_path="data/message_history.db"):
def __init__(self, max_history=200, db_path="data/message_history.db"): # 默认max_history 改为 200
"""初始化消息总结功能
Args:
max_history: 每个聊天保存的最大消息数量
db_path: SQLite数据库文件路径
"""
self.LOG = logging.getLogger("MessageSummary")
self.max_history = max_history
self.max_history = max_history # 使用传入的 max_history
self.db_path = db_path
# 实例化XML处理器用于提取引用消息
self.xml_processor = XmlProcessor(self.LOG)
# 移除旧的内存存储相关代码
# self._msg_history = {} # 使用字典以群ID或用户ID为键
# self._msg_history_lock = Lock() # 添加锁以保证线程安全
try:
# 确保数据库文件所在的目录存在
db_dir = os.path.dirname(self.db_path)
if db_dir and not os.path.exists(db_dir):
os.makedirs(db_dir)
self.LOG.info(f"创建数据库目录: {db_dir}")
# 连接到数据库 (如果文件不存在会自动创建)
# check_same_thread=False 允许在不同线程中使用此连接
# 这在多线程机器人应用中是必要的,但要注意事务管理
self.conn = sqlite3.connect(self.db_path, check_same_thread=False)
self.cursor = self.conn.cursor()
self.LOG.info(f"已连接到 SQLite 数据库: {self.db_path}")
# 创建消息表 (如果不存在)
# 使用 INTEGER PRIMARY KEY AUTOINCREMENT 作为 rowid 的别名,方便管理
# timestamp_float 用于排序和限制数量
# timestamp_str 用于显示
# ---- 修改数据库表结构 ----
# 检查并添加 sender_wxid 列 (如果不存在)
self.cursor.execute("PRAGMA table_info(messages)")
columns = [col[1] for col in self.cursor.fetchall()]
if 'sender_wxid' not in columns:
try:
self.cursor.execute("ALTER TABLE messages ADD COLUMN sender_wxid TEXT")
self.conn.commit()
self.LOG.info("已向 messages 表添加 sender_wxid 列")
except sqlite3.OperationalError as e:
# 如果表是空的,直接删除重建可能更简单
self.LOG.warning(f"添加 sender_wxid 列失败 ({e}),可能是因为表非空且有主键?尝试重建表。")
# 注意:这会丢失现有数据!
self.cursor.execute("DROP TABLE IF EXISTS messages")
self.conn.commit()
self.cursor.execute("""
CREATE TABLE IF NOT EXISTS messages (
id INTEGER PRIMARY KEY AUTOINCREMENT,
chat_id TEXT NOT NULL,
sender TEXT NOT NULL,
sender_wxid TEXT, -- 新增: 存储发送者wxid
content TEXT NOT NULL,
timestamp_float REAL NOT NULL,
timestamp_str TEXT NOT NULL
timestamp_str TEXT NOT NULL -- 存储完整时间格式 YYYY-MM-DD HH:MM:SS
)
""")
# 为 chat_id 和 timestamp_float 创建索引,提高查询效率
# ---- 数据库表结构修改结束 ----
self.cursor.execute("""
CREATE INDEX IF NOT EXISTS idx_chat_time ON messages (chat_id, timestamp_float)
""")
# 新增 sender_wxid 索引 (可选如果经常需要按wxid查询)
self.cursor.execute("""
CREATE INDEX IF NOT EXISTS idx_sender_wxid ON messages (sender_wxid)
""")
self.conn.commit() # 提交更改
self.LOG.info("消息表已准备就绪")
except sqlite3.Error as e:
self.LOG.error(f"数据库初始化失败: {e}")
# 如果数据库连接失败,抛出异常或进行其他错误处理
raise ConnectionError(f"无法连接或初始化数据库: {e}") from e
except OSError as e:
self.LOG.error(f"创建数据库目录失败: {e}")
raise OSError(f"无法创建数据库目录: {e}") from e
def close_db(self):
"""关闭数据库连接"""
if hasattr(self, 'conn') and self.conn:
@@ -85,34 +95,46 @@ class MessageSummary:
self.LOG.info("数据库连接已关闭")
except sqlite3.Error as e:
self.LOG.error(f"关闭数据库连接时出错: {e}")
def record_message(self, chat_id, sender_name, content, timestamp=None):
# ---- 修改 record_message ----
def record_message(self, chat_id, sender_name, sender_wxid, content, timestamp=None):
"""记录单条消息到数据库
Args:
chat_id: 聊天ID群ID或用户ID
sender_name: 发送者名称
sender_wxid: 发送者wxid
content: 消息内容
timestamp: 时间戳,默认为当前时间
timestamp: 外部提供的时间字符串(优先使用),否则生成
"""
try:
# 生成浮点数时间戳用于排序
current_time_float = time.time()
# 生成或使用传入的时间字符串
# ---- 修改时间格式 ----
if not timestamp:
timestamp_str = time.strftime("%H:%M", time.localtime(current_time_float))
# 默认使用完整时间格式
timestamp_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(current_time_float))
else:
timestamp_str = timestamp
# 插入新消息
# 如果传入的时间戳只有时分,转换为完整格式
if len(timestamp) <= 5: # 如果格式是 "HH:MM"
today = time.strftime("%Y-%m-%d", time.localtime(current_time_float))
timestamp_str = f"{today} {timestamp}:00" # 补上秒
elif len(timestamp) == 8 and timestamp.count(':') == 2: # 如果格式是 "HH:MM:SS"
today = time.strftime("%Y-%m-%d", time.localtime(current_time_float))
timestamp_str = f"{today} {timestamp}"
elif len(timestamp) == 16 and timestamp.count('-') == 2 and timestamp.count(':') == 1: # "YYYY-MM-DD HH:MM"
timestamp_str = f"{timestamp}:00" # 补上秒
else:
timestamp_str = timestamp # 假设是完整格式
# 插入新消息,包含 sender_wxid
self.cursor.execute("""
INSERT INTO messages (chat_id, sender, content, timestamp_float, timestamp_str)
VALUES (?, ?, ?, ?, ?)
""", (chat_id, sender_name, content, current_time_float, timestamp_str))
INSERT INTO messages (chat_id, sender, sender_wxid, content, timestamp_float, timestamp_str)
VALUES (?, ?, ?, ?, ?, ?)
""", (chat_id, sender_name, sender_wxid, content, current_time_float, timestamp_str))
# ---- 时间格式和插入修改结束 ----
# 删除超出 max_history 的旧消息
# 使用子查询找到要保留的最新 N 条消息的 id然后删除不在这个列表中的该 chat_id 的其他消息
self.cursor.execute("""
DELETE FROM messages
WHERE chat_id = ? AND id NOT IN (
@@ -123,275 +145,267 @@ class MessageSummary:
LIMIT ?
)
""", (chat_id, chat_id, self.max_history))
self.conn.commit() # 提交事务
except sqlite3.Error as e:
self.LOG.error(f"记录消息到数据库时出错: {e}")
# 可以考虑回滚事务
try:
self.conn.rollback()
except:
pass
# ---- record_message 修改结束 ----
def clear_message_history(self, chat_id):
"""清除指定聊天的消息历史记录
Args:
chat_id: 聊天ID群ID或用户ID
Returns:
bool: 是否成功清除
"""
try:
# 删除指定chat_id的所有消息
self.cursor.execute("DELETE FROM messages WHERE chat_id = ?", (chat_id,))
rows_deleted = self.cursor.rowcount # 获取删除的行数
rows_deleted = self.cursor.rowcount
self.conn.commit()
self.LOG.info(f"为 chat_id={chat_id} 清除了 {rows_deleted} 条历史消息")
return True # 删除0条也视为成功完成操作
return True
except sqlite3.Error as e:
self.LOG.error(f"清除消息历史时出错 (chat_id={chat_id}): {e}")
return False
def get_message_count(self, chat_id):
"""获取指定聊天的消息数量
Args:
chat_id: 聊天ID群ID或用户ID
Returns:
int: 消息数量
"""
try:
# 使用COUNT查询获取消息数量
self.cursor.execute("SELECT COUNT(*) FROM messages WHERE chat_id = ?", (chat_id,))
result = self.cursor.fetchone() # fetchone() 返回一个元组,例如 (5,)
result = self.cursor.fetchone()
return result[0] if result else 0
except sqlite3.Error as e:
self.LOG.error(f"获取消息数量时出错 (chat_id={chat_id}): {e}")
return 0
# ---- 修改 get_messages ----
def get_messages(self, chat_id):
"""获取指定聊天的所有消息 (按时间升序)
"""获取指定聊天的所有消息 (按时间升序)包含发送者wxid和完整时间戳
Args:
chat_id: 聊天ID群ID或用户ID
Returns:
list: 消息列表,格式为 [{"sender": ..., "content": ..., "time": ...}]
list: 消息列表,格式为 [{"sender": ..., "sender_wxid": ..., "content": ..., "time": ...}]
"""
messages = []
try:
# 查询需要的字段,按浮点时间戳升序排序,限制数量
# 查询需要的字段,包括 sender_wxid 和 timestamp_str
self.cursor.execute("""
SELECT sender, content, timestamp_str
SELECT sender, sender_wxid, content, timestamp_str
FROM messages
WHERE chat_id = ?
ORDER BY timestamp_float ASC
LIMIT ?
""", (chat_id, self.max_history))
rows = self.cursor.fetchall() # fetchall() 返回包含元组的列表
rows = self.cursor.fetchall()
# 将数据库行转换为期望的字典列表格式
for row in rows:
messages.append({
"sender": row[0],
"content": row[1],
"time": row[2] # 使用存储的 timestamp_str
"sender_wxid": row[1], # 添加 sender_wxid
"content": row[2],
"time": row[3] # 使用存储的完整 timestamp_str
})
except sqlite3.Error as e:
self.LOG.error(f"获取消息列表时出错 (chat_id={chat_id}): {e}")
# 出错时返回空列表,保持与原逻辑一致
return messages
# ---- get_messages 修改结束 ----
def _basic_summarize(self, messages):
"""基本的消息总结逻辑不使用AI
Args:
messages: 消息列表
messages: 消息列表 (格式同 get_messages 返回值)
Returns:
str: 消息总结
"""
if not messages:
return "没有可以总结的历史消息。"
# 构建总结
res = ["以下是近期聊天记录摘要:\n"]
for msg in messages:
# 使用新的时间格式和发送者
res.append(f"[{msg['time']}]{msg['sender']}: {msg['content']}")
return "\n".join(res)
def _ai_summarize(self, messages, chat_model, chat_id):
"""使用AI模型生成消息总结
Args:
messages: 消息列表
messages: 消息列表 (格式同 get_messages 返回值)
chat_model: AI聊天模型对象
chat_id: 聊天ID
Returns:
str: 消息总结
"""
if not messages:
return "没有可以总结的历史消息。"
# 构建用于AI总结的消息格式
formatted_msgs = []
for msg in messages:
# 使用新的时间格式和发送者
formatted_msgs.append(f"[{msg['time']}]{msg['sender']}: {msg['content']}")
# 构建提示词 - 更加客观、中立
# 构建提示词 ... (保持不变)
prompt = (
"请仔细阅读并分析以下聊天记录,生成一简要的、结构清晰且抓住重点的摘要。\n\n"
"你是泡泡,请仔细阅读并分析以下聊天记录,生成一简要的、结构清晰且抓住重点的摘要。\n\n"
"摘要格式要求:\n"
"1. 使用数字编号列表 (例如 1., 2., 3.) 来组织内容每个编号代表一个独立的主要讨论主题不要超过3个主题。\n"
"2. 在每个编号的主题下,写成一段不带格式的文字,每个主题单独成段并空行,需包含以下内容:\n"
" - 这个讨论的核心的简要描述。\n"
" - 该讨论的关键成员 (用括号 [用户名] 格式) 和他们的关键发言内容、成员之间的关键互动。\n"
" - 该讨论的讨论结果。\n"
"3. 总结需客观、精炼、简短精悍,直接呈现最核心且精简的事实,尽量不要添加额外的评论或分析。\n"
"3. 总结需客观、精炼、简短精悍,直接呈现最核心且精简的事实,尽量不要添加额外的评论或分析,不要总结有关自己的事情\n"
"4. 不要暴露出格式不要说核心是xxx参与者是xxx结果是xxx自然一点。\n\n"
"聊天记录如下:\n" + "\n".join(formatted_msgs)
)
# 使用AI模型生成总结 - 创建一个临时的聊天会话ID避免污染正常对话上下文
try:
# 对于支持新会话参数的模型,使用特殊标记告知这是独立的总结请求
if hasattr(chat_model, 'get_answer_with_context') and callable(getattr(chat_model, 'get_answer_with_context')):
# 使用带上下文参数的方法
summary = chat_model.get_answer_with_context(prompt, "summary_" + chat_id, clear_context=True)
else:
# 普通方法使用特殊会话ID
summary = chat_model.get_answer(prompt, "summary_" + chat_id)
# 调用AI部分保持不变但现在AI模型内部应使用数据库历史记录
# 确保调用 get_answer 时AI模型实例已经关联了 MessageSummary
summary = chat_model.get_answer(prompt, f"summary_{chat_id}") # 使用特殊 wxid 避免冲突
if not summary:
return self._basic_summarize(messages)
return summary
except Exception as e:
self.LOG.error(f"使用AI生成总结失败: {e}")
return self._basic_summarize(messages)
def summarize_messages(self, chat_id, chat_model=None):
"""生成消息总结
Args:
chat_id: 聊天ID群ID或用户ID
chat_model: AI聊天模型对象如果为None则使用基础总结
Returns:
str: 消息总结
"""
messages = self.get_messages(chat_id)
if not messages:
return "没有可以总结的历史消息。"
# 根据是否提供了AI模型决定使用哪种总结方式
if chat_model:
return self._ai_summarize(messages, chat_model, chat_id)
# 检查 chat_model 是否具有 get_answer 方法并且已经初始化了 message_summary
if hasattr(chat_model, 'get_answer') and hasattr(chat_model, 'message_summary') and chat_model.message_summary:
return self._ai_summarize(messages, chat_model, chat_id)
else:
self.LOG.warning(f"提供的 chat_model ({type(chat_model)}) 不支持基于数据库历史的总结或未正确初始化。将使用基础总结。")
return self._basic_summarize(messages)
else:
return self._basic_summarize(messages)
# ---- 修改 process_message_from_wxmsg ----
def process_message_from_wxmsg(self, msg, wcf, all_contacts, bot_wxid=None):
"""从微信消息对象中处理并记录与总结相关的文本消息
记录所有群聊和私聊的文本(1)和App/卡片(49)消息。
使用 XmlProcessor 提取用户实际输入的新内容或卡片标题。
会自动跳过所有匹配 commands.registry 中定义的命令的消息。
Args:
msg: 微信消息对象(WxMsg)
wcf: 微信接口对象
all_contacts: 所有联系人字典
bot_wxid: 机器人自己的wxid,用于检测@机器人的消息
bot_wxid: 机器人自己的wxid (必须提供以正确记录 sender_wxid)
"""
# 1. 基本筛选只记录群聊中的、非自己发送的文本消息或App消息
if not msg.from_group():
return
if msg.type != 0x01 and msg.type != 49: # 只记录文本消息和App消息(包括引用消息)
return
if msg.from_self():
if msg.type != 0x01 and msg.type != 49:
return
chat_id = msg.roomid
# 原始消息内容用于命令和@匹配
original_content = msg.content.strip()
# 2. 预先判断消息是否 @ 了机器人 (如果提供了 bot_wxid)
is_at_message = False
bot_name_in_group = "" # 初始化为空字符串
if bot_wxid:
bot_name_in_group = wcf.get_alias_in_chatroom(bot_wxid, chat_id)
if not bot_name_in_group:
bot_name_in_group = all_contacts.get(bot_wxid, "泡泡") # 使用通讯录或默认名
# 优化@检查:检查原始文本中是否包含 "@机器人昵称" (考虑特殊空格)
mention_pattern_exact = f"@{re.escape(bot_name_in_group)}"
mention_pattern_space = rf"@{re.escape(bot_name_in_group)}(\u2005|\s|$)"
if mention_pattern_exact in original_content or re.search(mention_pattern_space, original_content):
is_at_message = True
# 3. 检查消息是否匹配任何已定义的命令
for command in COMMANDS:
# 只关心在群聊生效的命令
if command.scope in ["group", "both"]:
match = command.pattern.search(original_content)
if match:
# 如果命令需要@,但消息实际上没有@机器人,则这不是一个有效的命令调用,继续检查下一个命令
if command.need_at and not is_at_message:
continue
# 如果命令不需要@,或者需要@且消息确实@了机器人,那么这就是一个命令调用,跳过记录
self.LOG.debug(f"跳过匹配命令 '{command.name}' 的消息: {original_content[:30]}...")
return # 直接返回,不记录此消息
# 4. 如果消息没有匹配任何命令,但确实@了机器人,也跳过记录
# (防止记录类似 "你好 @机器人" 这样的非命令交互)
if is_at_message:
self.LOG.debug(f"跳过非命令但包含@机器人的消息: {original_content[:30]}...")
chat_id = msg.roomid if msg.from_group() else msg.sender
if not chat_id:
self.LOG.warning(f"无法确定消息的chat_id (msg.id={msg.id}), 跳过记录")
return
# 5. 使用 XmlProcessor 提取消息详情 (如果消息不是命令且没有@机器人)
# ---- 获取 sender_wxid ----
sender_wxid = msg.sender
if not sender_wxid:
# 理论上不应发生,但做个防护
self.LOG.error(f"消息 (id={msg.id}) 缺少 sender wxid无法记录")
return
# ---- 获取 sender_wxid 结束 ----
# 确定发送者名称 (逻辑不变)
sender_name = ""
if msg.from_group():
sender_name = wcf.get_alias_in_chatroom(sender_wxid, chat_id)
if not sender_name:
sender_name = all_contacts.get(sender_wxid, sender_wxid)
else:
if bot_wxid and sender_wxid == bot_wxid:
sender_name = all_contacts.get(bot_wxid, "机器人")
else:
sender_name = all_contacts.get(sender_wxid, sender_wxid)
# 使用 XmlProcessor 提取消息详情 (逻辑不变)
extracted_data = None
try:
# 传入原始 msg 对象
extracted_data = self.xml_processor.extract_quoted_message(msg)
if msg.from_group():
extracted_data = self.xml_processor.extract_quoted_message(msg)
else:
extracted_data = self.xml_processor.extract_private_quoted_message(msg)
except Exception as e:
self.LOG.error(f"使用XmlProcessor提取消息内容时出错 (msg.id={msg.id}): {e}")
return # 出错时,保守起见,不记录
self.LOG.error(f"使用XmlProcessor提取消息内容时出错 (msg.id={msg.id}, type={msg.type}): {e}")
if msg.type == 0x01 and not ("<" in msg.content and ">" in msg.content):
content_to_record = msg.content.strip()
source_info = "来自 纯文本消息 (XML解析失败后备)"
self.LOG.warning(f"XML解析失败但记录纯文本消息: {content_to_record[:50]}...")
current_time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# 调用 record_message 时需要 sender_wxid
self.record_message(chat_id, sender_name, sender_wxid, content_to_record, current_time_str)
return
# 6. 确定要记录的内容 (content_to_record)
# 确定要记录的内容 (content_to_record) - 复用之前的逻辑
content_to_record = ""
source_info = "未知来源"
# 优先使用提取到的新内容 (来自回复或普通文本或<title>)
temp_new_content = extracted_data.get("new_content", "").strip()
if temp_new_content:
content_to_record = temp_new_content
source_info = "来自 new_content (回复/文本/标题)"
# 如果是引用类型消息,添加引用标记和引用内容的简略信息
if extracted_data.get("has_quote", False):
quoted_sender = extracted_data.get("quoted_sender", "")
quoted_content = extracted_data.get("quoted_content", "")
# 处理被引用内容
if quoted_content:
# 对较长的引用内容进行截断
max_quote_length = 30
if len(quoted_content) > max_quote_length:
quoted_content = quoted_content[:max_quote_length] + "..."
# 如果被引用的是卡片,则使用标准卡片格式
if extracted_data.get("quoted_is_card", False):
quoted_card_title = extracted_data.get("quoted_card_title", "")
quoted_card_type = extracted_data.get("quoted_card_type", "")
# 根据卡片类型确定内容类型
card_type = "卡片"
if "链接" in quoted_card_type or "消息" in quoted_card_type:
@@ -404,82 +418,58 @@ class MessageSummary:
card_type = "图片"
elif "文件" in quoted_card_type:
card_type = "文件"
# 整个卡片内容包裹在【】中
quoted_content = f"{card_type}: {quoted_card_title}"
# 根据是否有被引用者信息构建引用前缀
if quoted_sender:
# 添加带引用人的引用格式,将新内容放在前面,引用内容放在后面
content_to_record = f"{content_to_record} 【回复 {quoted_sender}{quoted_content}"
else:
# 仅添加引用内容,将新内容放在前面,引用内容放在后面
content_to_record = f"{content_to_record} 【回复:{quoted_content}"
# 其次,如果新内容为空,但这是一个卡片且有标题,则使用卡片标题
elif extracted_data.get("is_card") and extracted_data.get("card_title", "").strip():
# 卡片消息使用固定格式,包含标题和描述
card_title = extracted_data.get("card_title", "").strip()
card_description = extracted_data.get("card_description", "").strip()
card_type = extracted_data.get("card_type", "")
card_source = extracted_data.get("card_appname") or extracted_data.get("card_sourcedisplayname", "")
# 构建格式化的卡片内容,包含标题和描述
# 根据卡片类型进行特殊处理
if "链接" in card_type or "消息" in card_type:
content_type = "链接"
elif "视频" in card_type or "音乐" in card_type:
content_type = "媒体"
elif "位置" in card_type:
content_type = "位置"
elif "图片" in card_type:
content_type = "图片"
elif "文件" in card_type:
content_type = "文件"
else:
content_type = "卡片"
# 构建完整卡片内容
if "链接" in card_type or "消息" in card_type: content_type = "链接"
elif "视频" in card_type or "音乐" in card_type: content_type = "媒体"
elif "位置" in card_type: content_type = "位置"
elif "图片" in card_type: content_type = "图片"
elif "文件" in card_type: content_type = "文件"
else: content_type = "卡片"
card_content = f"{content_type}: {card_title}"
# 添加描述内容(如果有)
if card_description:
# 对较长的描述进行截断
max_desc_length = 50
if len(card_description) > max_desc_length:
card_description = card_description[:max_desc_length] + "..."
card_content += f" - {card_description}"
# 添加来源信息(如果有)
if card_source:
card_content += f" (来自:{card_source})"
# 将整个卡片内容包裹在【】中
content_to_record = f"{card_content}"
source_info = "来自 卡片(标题+描述)"
# 普通文本消息的保底处理 (已在前面排除了命令和@消息)
# 普通文本消息的保底处理
elif msg.type == 0x01 and not ("<" in msg.content and ">" in msg.content): # 再次确认是纯文本
content_to_record = msg.content.strip() # 使用原始纯文本
source_info = "来自 纯文本消息"
# 7. 如果最终没有提取到有效内容,则不记录
# 如果最终没有提取到有效内容,则不记录 (逻辑不变)
if not content_to_record:
# Debug日志级别调整为更详细说明为何没有内容
self.LOG.debug(f"未能提取到有效文本内容用于记录,跳过 (msg.id={msg.id}) - IsCard: {extracted_data.get('is_card', False)}, HasQuote: {extracted_data.get('has_quote', False)}")
self.LOG.debug(f"未能提取到有效文本内容用于记录,跳过 (msg.id={msg.id}, type={msg.type}) - IsCard: {extracted_data.get('is_card', False)}, HasQuote: {extracted_data.get('has_quote', False)}")
return
# 8. 获取发送者昵称
sender_name = wcf.get_alias_in_chatroom(msg.sender, msg.roomid)
if not sender_name: # 如果没有群昵称,尝试获取微信昵称
sender_data = all_contacts.get(msg.sender)
sender_name = sender_data if sender_data else msg.sender # 最后使用wxid
# 获取当前时间字符串 (使用完整格式)
current_time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# 获取当前时间(只用于记录,不再打印)
current_time_str = time.strftime("%H:%M", time.localtime())
# 9. 记录提取到的有效内容
self.LOG.debug(f"记录消息 (来源: {source_info}): '[{current_time_str}]{sender_name}: {content_to_record}' (来自 msg.id={msg.id})")
self.record_message(chat_id, sender_name, content_to_record, current_time_str)
# ---- 修改记录调用 ----
self.LOG.debug(f"记录消息 (来源: {source_info}, 类型: {'群聊' if msg.from_group() else '私聊'}): '[{current_time_str}]{sender_name}({sender_wxid}): {content_to_record}' (来自 msg.id={msg.id})")
# 调用 record_message 时传入 sender_wxid
self.record_message(chat_id, sender_name, sender_wxid, content_to_record, current_time_str)
# ---- 记录调用修改结束 ----
# ---- process_message_from_wxmsg 修改结束 ----

View File

@@ -1,13 +1,11 @@
"""图像生成功能模块
包含以下功能:
- CogView: 智谱AI文生图
- AliyunImage: 阿里云文生图
- GeminiImage: 谷歌Gemini文生图
"""
from .img_cogview import CogView
from .img_aliyun_image import AliyunImage
from .img_gemini_image import GeminiImage
__all__ = ['CogView', 'AliyunImage', 'GeminiImage']
__all__ = ['AliyunImage', 'GeminiImage']

View File

@@ -1,99 +0,0 @@
import logging
import os
import requests
import tempfile
import time
from zhipuai import ZhipuAI
class CogView():
def __init__(self, conf: dict) -> None:
self.api_key = conf.get("api_key")
self.model = conf.get("model", "cogview-4-250304") # 默认使用最新模型
self.quality = conf.get("quality", "standard")
self.size = conf.get("size", "1024x1024")
self.enable = conf.get("enable", True)
project_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
default_img_dir = os.path.join(project_dir, "zhipuimg")
self.temp_dir = conf.get("temp_dir", default_img_dir)
self.LOG = logging.getLogger("CogView")
if self.api_key:
self.client = ZhipuAI(api_key=self.api_key)
else:
self.LOG.warning("未配置智谱API密钥图像生成功能无法使用")
self.client = None
os.makedirs(self.temp_dir, exist_ok=True)
@staticmethod
def value_check(conf: dict) -> bool:
if conf and conf.get("api_key") and conf.get("enable", True):
return True
return False
def __repr__(self):
return 'CogView'
def generate_image(self, prompt: str) -> str:
"""
生成图像并返回图像URL
Args:
prompt (str): 图像描述
Returns:
str: 生成的图像URL或错误信息
"""
if not self.client or not self.enable:
return "图像生成功能未启用或API密钥未配置"
try:
response = self.client.images.generations(
model=self.model,
prompt=prompt,
quality=self.quality,
size=self.size,
)
if response and response.data and len(response.data) > 0:
return response.data[0].url
else:
return "图像生成失败,未收到有效响应"
except Exception as e:
error_str = str(e)
self.LOG.error(f"图像生成出错: {error_str}")
if "Error code: 500" in error_str or "HTTP/1.1 500" in error_str or "code\":\"1234\"" in error_str:
self.LOG.warning(f"检测到违规内容请求: {prompt}")
return "很抱歉,您的请求可能包含违规内容,无法生成图像"
return "图像生成失败,请调整您的描述后重试"
def download_image(self, image_url: str) -> str:
"""
下载图片并返回本地文件路径
Args:
image_url (str): 图片URL
Returns:
str: 本地图片文件路径下载失败则返回None
"""
try:
response = requests.get(image_url, stream=True, timeout=30)
if response.status_code == 200:
file_path = os.path.join(self.temp_dir, f"cogview_{int(time.time())}.jpg")
with open(file_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
self.LOG.info(f"图片已下载到: {file_path}")
return file_path
else:
self.LOG.error(f"下载图片失败,状态码: {response.status_code}")
return None
except Exception as e:
self.LOG.error(f"下载图片过程出错: {str(e)}")
return None

View File

@@ -5,7 +5,7 @@ import shutil
import time
from wcferry import Wcf
from configuration import Config
from image import CogView, AliyunImage, GeminiImage
from image import AliyunImage, GeminiImage
class ImageGenerationManager:
@@ -29,7 +29,6 @@ class ImageGenerationManager:
self.send_text = send_text_callback
# 初始化图像生成服务
self.cogview = None
self.aliyun_image = None
self.gemini_image = None
@@ -46,15 +45,7 @@ class ImageGenerationManager:
self.LOG.info("谷歌Gemini图像生成功能已启用")
except Exception as e:
self.LOG.error(f"初始化谷歌Gemini图像生成服务失败: {e}")
# 初始化CogView服务
if hasattr(self.config, 'COGVIEW') and self.config.COGVIEW.get('enable', False):
try:
self.cogview = CogView(self.config.COGVIEW)
self.LOG.info("智谱CogView文生图功能已初始化")
except Exception as e:
self.LOG.error(f"初始化智谱CogView文生图服务失败: {str(e)}")
# 初始化AliyunImage服务
if hasattr(self.config, 'ALIYUN_IMAGE') and self.config.ALIYUN_IMAGE.get('enable', False):
try:
@@ -65,23 +56,13 @@ class ImageGenerationManager:
def handle_image_generation(self, service_type, prompt, receiver, at_user=None):
"""处理图像生成请求的通用函数
:param service_type: 服务类型,'cogview'/'aliyun'/'gemini'
:param service_type: 服务类型,'aliyun'/'gemini'
:param prompt: 图像生成提示词
:param receiver: 接收者ID
:param at_user: 被@的用户ID用于群聊
:return: 处理状态True成功False失败
"""
if service_type == 'cogview':
if not self.cogview or not hasattr(self.config, 'COGVIEW') or not self.config.COGVIEW.get('enable', False):
self.LOG.info(f"收到智谱文生图请求但功能未启用: {prompt}")
fallback_to_chat = self.config.COGVIEW.get('fallback_to_chat', False) if hasattr(self.config, 'COGVIEW') else False
if not fallback_to_chat:
self.send_text("报一丝,智谱文生图功能没有开启,请联系管理员开启此功能。(可以贿赂他开启)", receiver, at_user)
return True
return False
service = self.cogview
wait_message = "正在生成图像,请稍等..."
elif service_type == 'aliyun':
if service_type == 'aliyun':
if not self.aliyun_image or not hasattr(self.config, 'ALIYUN_IMAGE') or not self.config.ALIYUN_IMAGE.get('enable', False):
self.LOG.info(f"收到阿里文生图请求但功能未启用: {prompt}")
fallback_to_chat = self.config.ALIYUN_IMAGE.get('fallback_to_chat', False) if hasattr(self.config, 'ALIYUN_IMAGE') else False

View File

@@ -14,16 +14,6 @@
在`config.yaml`中进行以下配置才可以调用:
```yaml
cogview: # -----智谱AI图像生成配置这行不填-----
# 此API请参考 https://www.bigmodel.cn/dev/api/image-model/cogview
enable: False # 是否启用图像生成功能默认关闭将False替换为true则开启此模型可和其他模型同时运行。
api_key: # 智谱API密钥请填入您的API Key
model: cogview-4-250304 # 模型编码可选cogview-4-250304、cogview-4、cogview-3-flash
quality: standard # 生成质量可选standard快速、hd高清
size: 1024x1024 # 图片尺寸,可自定义,需符合条件
trigger_keyword: 牛智谱 # 触发图像生成的关键词
temp_dir: # 临时文件存储目录留空则默认使用项目目录下的zhipuimg文件夹如果要更改例如 D:/Pictures/temp 或 /home/user/temp
fallback_to_chat: true # 当未启用绘画功能时true=将请求发给聊天模型处理false=回复固定的未启用提示信息
aliyun_image: # -----如果要使用阿里云文生图,取消下面的注释并填写相关内容,模型到阿里云百炼找通义万相-文生图2.1-Turbo-----
enable: true # 是否启用阿里文生图功能false为关闭默认开启如果未配置则会将消息发送给聊天大模型

View File

@@ -61,8 +61,8 @@ def main(chat_type: int):
robot.LOG.info(f"WeChatRobot【{__version__}】成功启动···")
# 机器人启动发送测试消息
robot.sendTextMsg("机器人启动成功!", "filehelper")
# # 机器人启动发送测试消息
# robot.sendTextMsg("机器人启动成功!", "filehelper")
# 接收消息
# robot.enableRecvMsg() # 可能会丢消息?

View File

@@ -14,7 +14,5 @@ jupyter_client
zhdate
ipykernel
google-generativeai>=0.3.0
zhipuai>=1.0.0
ollama
dashscope
google-genai

142
robot.py
View File

@@ -9,22 +9,16 @@ from threading import Thread
import os
import random
import shutil
from ai_providers.ai_zhipu import ZhiPu
from image import CogView, AliyunImage, GeminiImage
from image import AliyunImage, GeminiImage
from image.img_manager import ImageGenerationManager
from wcferry import Wcf, WxMsg
from ai_providers.ai_bard import BardAssistant
from ai_providers.ai_chatglm import ChatGLM
from ai_providers.ai_ollama import Ollama
from ai_providers.ai_chatgpt import ChatGPT
from ai_providers.ai_deepseek import DeepSeek
from ai_providers.ai_perplexity import Perplexity
from function.func_weather import Weather
from function.func_news import News
from ai_providers.ai_tigerbot import TigerBot
from ai_providers.ai_xinghuo_web import XinghuoWeb
from function.func_duel import start_duel, get_rank_list, get_player_stats, change_player_name, DuelManager, attempt_sneak_attack
from function.func_summary import MessageSummary # 导入新的MessageSummary类
from function.func_reminder import ReminderManager # 导入ReminderManager类
@@ -47,74 +41,56 @@ class Robot(Job):
"""
def __init__(self, config: Config, wcf: Wcf, chat_type: int) -> None:
# 调用父类构造函数
super().__init__()
self.wcf = wcf
self.config = config
self.LOG = logging.getLogger("Robot")
self.wxid = self.wcf.get_self_wxid()
self.wxid = self.wcf.get_self_wxid() # 获取机器人自己的wxid
self.allContacts = self.getAllContacts()
self._msg_timestamps = []
# 创建决斗管理器
self.duel_manager = DuelManager(self.sendDuelMsg)
# 初始化消息总结功能
self.message_summary = MessageSummary(max_history=200)
# 初始化XML处理器
try:
db_path = "data/message_history.db"
# 使用 getattr 安全地获取 MAX_HISTORY如果不存在则默认为 300
max_hist = getattr(config, 'MAX_HISTORY', 300)
self.message_summary = MessageSummary(max_history=max_hist, db_path=db_path)
self.LOG.info(f"消息历史记录器已初始化 (max_history={self.message_summary.max_history})")
except Exception as e:
self.LOG.error(f"初始化 MessageSummary 失败: {e}", exc_info=True)
self.message_summary = None # 保持失败时的处理
self.xml_processor = XmlProcessor(self.LOG)
# 初始化所有可能需要的AI模型实例
self.chat_models = {}
self.LOG.info("开始初始化各种AI模型...")
# 初始化TigerBot
if TigerBot.value_check(self.config.TIGERBOT):
self.chat_models[ChatType.TIGER_BOT.value] = TigerBot(self.config.TIGERBOT)
self.LOG.info(f"已加载 TigerBot 模型")
# 初始化ChatGPT
if ChatGPT.value_check(self.config.CHATGPT):
self.chat_models[ChatType.CHATGPT.value] = ChatGPT(self.config.CHATGPT)
self.LOG.info(f"已加载 ChatGPT 模型")
# 初始化讯飞星火
if XinghuoWeb.value_check(self.config.XINGHUO_WEB):
self.chat_models[ChatType.XINGHUO_WEB.value] = XinghuoWeb(self.config.XINGHUO_WEB)
self.LOG.info(f"已加载 讯飞星火 模型")
# 初始化ChatGLM
if ChatGLM.value_check(self.config.CHATGLM):
try:
# 检查key是否有实际内容而不只是存在
if self.config.CHATGLM.get('key') and self.config.CHATGLM.get('key').strip():
self.chat_models[ChatType.CHATGLM.value] = ChatGLM(self.config.CHATGLM)
self.LOG.info(f"已加载 ChatGLM 模型")
else:
self.LOG.warning("ChatGLM 配置中缺少有效的API密钥跳过初始化")
# 传入 message_summary 和 wxid
self.chat_models[ChatType.CHATGPT.value] = ChatGPT(
self.config.CHATGPT,
message_summary_instance=self.message_summary,
bot_wxid=self.wxid
)
self.LOG.info(f"已加载 ChatGPT 模型")
except Exception as e:
self.LOG.error(f"初始化 ChatGLM 模型时出错: {str(e)}")
# 初始化BardAssistant
if BardAssistant.value_check(self.config.BardAssistant):
self.chat_models[ChatType.BardAssistant.value] = BardAssistant(self.config.BardAssistant)
self.LOG.info(f"已加载 BardAssistant 模型")
# 初始化ZhiPu
if ZhiPu.value_check(self.config.ZhiPu):
self.chat_models[ChatType.ZhiPu.value] = ZhiPu(self.config.ZhiPu)
self.LOG.info(f"已加载 智谱 模型")
# 初始化Ollama
if Ollama.value_check(self.config.OLLAMA):
self.chat_models[ChatType.OLLAMA.value] = Ollama(self.config.OLLAMA)
self.LOG.info(f"已加载 Ollama 模型")
self.LOG.error(f"初始化 ChatGPT 模型时出错: {str(e)}")
# 初始化DeepSeek
if DeepSeek.value_check(self.config.DEEPSEEK):
self.chat_models[ChatType.DEEPSEEK.value] = DeepSeek(self.config.DEEPSEEK)
self.LOG.info(f"已加载 DeepSeek 模型")
try:
# 传入 message_summary 和 wxid
self.chat_models[ChatType.DEEPSEEK.value] = DeepSeek(
self.config.DEEPSEEK,
message_summary_instance=self.message_summary,
bot_wxid=self.wxid
)
self.LOG.info(f"已加载 DeepSeek 模型")
except Exception as e:
self.LOG.error(f"初始化 DeepSeek 模型时出错: {str(e)}")
# 初始化Perplexity
if Perplexity.value_check(self.config.PERPLEXITY):
@@ -277,40 +253,60 @@ class Robot(Job):
Thread(target=innerProcessMsg, name="GetMessage", args=(self.wcf,), daemon=True).start()
def sendTextMsg(self, msg: str, receiver: str, at_list: str = "") -> None:
""" 发送消息
""" 发送消息并记录
:param msg: 消息字符串
:param receiver: 接收人wxid或者群id
:param at_list: 要@的wxid, @所有人的wxid为notify@all
"""
# 随机延迟0.3-1.3秒,并且一分钟内发送限制
# 延迟和频率限制 (逻辑不变)
time.sleep(float(str(time.time()).split('.')[-1][-2:]) / 100.0 + 0.3)
now = time.time()
if self.config.SEND_RATE_LIMIT > 0:
# 清除超过1分钟的记录
self._msg_timestamps = [t for t in self._msg_timestamps if now - t < 60]
if len(self._msg_timestamps) >= self.config.SEND_RATE_LIMIT:
self.LOG.warning(f"发送消息过快,已达到每分钟{self.config.SEND_RATE_LIMIT}条上限。")
return
self._msg_timestamps.append(now)
# msg 中需要有 @ 名单中一样数量的 @
ats = ""
message_to_send = msg # 保存原始消息用于记录
if at_list:
if at_list == "notify@all": # @所有人
if at_list == "notify@all":
ats = " @所有人"
else:
wxids = at_list.split(",")
for wxid in wxids:
# 根据 wxid 查找群昵称
ats += f" @{self.wcf.get_alias_in_chatroom(wxid, receiver)}"
for wxid_at in wxids: # Renamed variable
ats += f" @{self.wcf.get_alias_in_chatroom(wxid_at, receiver)}"
# {msg}{ats} 表示要发送的消息内容后面紧跟@,例如 北京天气情况为xxx @张三
if ats == "":
self.LOG.info(f"To {receiver}: {msg}")
self.wcf.send_text(f"{msg}", receiver, at_list)
else:
self.LOG.info(f"To {receiver}:\n{ats}\n{msg}")
self.wcf.send_text(f"{ats}\n\n{msg}", receiver, at_list)
try:
# 发送消息 (逻辑不变)
if ats == "":
self.LOG.info(f"To {receiver}: {msg}")
self.wcf.send_text(f"{msg}", receiver, at_list)
else:
full_msg_content = f"{ats}\n\n{msg}"
self.LOG.info(f"To {receiver}:\n{ats}\n{msg}")
self.wcf.send_text(full_msg_content, receiver, at_list)
# ---- 修改记录逻辑 ----
if self.message_summary: # 检查 message_summary 是否初始化成功
# 确定机器人的名字
robot_name = self.allContacts.get(self.wxid, "机器人")
# 使用 self.wxid 作为 sender_wxid
# 注意:这里不生成时间戳,让 record_message 内部生成
self.message_summary.record_message(
chat_id=receiver,
sender_name=robot_name,
sender_wxid=self.wxid, # 传入机器人自己的 wxid
content=message_to_send
)
self.LOG.debug(f"已记录机器人发送的消息到 {receiver}")
else:
self.LOG.warning("MessageSummary 未初始化,无法记录发送的消息")
# ---- 记录逻辑修改结束 ----
except Exception as e:
self.LOG.error(f"发送消息失败: {e}")
def getAllContacts(self) -> dict:
"""