mirror of
https://github.com/zhayujie/chatgpt-on-wechat.git
synced 2026-02-21 08:09:41 +08:00
643 lines
26 KiB
Python
643 lines
26 KiB
Python
# encoding:utf-8
|
||
|
||
import time
|
||
import json
|
||
import requests
|
||
|
||
from models.bot import Bot
|
||
from models.minimax.minimax_session import MinimaxSession
|
||
from models.session_manager import SessionManager
|
||
from bridge.context import Context, ContextType
|
||
from bridge.reply import Reply, ReplyType
|
||
from common.log import logger
|
||
from config import conf, load_config
|
||
from common import const
|
||
|
||
|
||
# MiniMax对话模型API
|
||
class MinimaxBot(Bot):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.args = {
|
||
"model": conf().get("model") or "MiniMax-M2.1",
|
||
"temperature": conf().get("temperature", 0.3),
|
||
"top_p": conf().get("top_p", 0.95),
|
||
}
|
||
# Use unified key name: minimax_api_key
|
||
self.api_key = conf().get("minimax_api_key")
|
||
if not self.api_key:
|
||
# Fallback to old key name for backward compatibility
|
||
self.api_key = conf().get("Minimax_api_key")
|
||
if self.api_key:
|
||
logger.warning("[MINIMAX] 'Minimax_api_key' is deprecated, please use 'minimax_api_key' instead")
|
||
|
||
# REST API endpoint
|
||
# Use Chinese endpoint by default, users can override in config
|
||
# International users should set: "minimax_api_base": "https://api.minimax.io/v1"
|
||
self.api_base = conf().get("minimax_api_base", "https://api.minimaxi.com/v1")
|
||
|
||
self.sessions = SessionManager(MinimaxSession, model=const.MiniMax)
|
||
|
||
def reply(self, query, context: Context = None) -> Reply:
|
||
# acquire reply content
|
||
logger.info("[MINIMAX] query={}".format(query))
|
||
if context.type == ContextType.TEXT:
|
||
session_id = context["session_id"]
|
||
reply = None
|
||
clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"])
|
||
if query in clear_memory_commands:
|
||
self.sessions.clear_session(session_id)
|
||
reply = Reply(ReplyType.INFO, "记忆已清除")
|
||
elif query == "#清除所有":
|
||
self.sessions.clear_all_session()
|
||
reply = Reply(ReplyType.INFO, "所有人记忆已清除")
|
||
elif query == "#更新配置":
|
||
load_config()
|
||
reply = Reply(ReplyType.INFO, "配置已更新")
|
||
if reply:
|
||
return reply
|
||
session = self.sessions.session_query(query, session_id)
|
||
logger.debug("[MINIMAX] session query={}".format(session))
|
||
|
||
model = context.get("Minimax_model")
|
||
new_args = self.args.copy()
|
||
if model:
|
||
new_args["model"] = model
|
||
|
||
reply_content = self.reply_text(session, args=new_args)
|
||
logger.debug(
|
||
"[MINIMAX] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(
|
||
session.messages,
|
||
session_id,
|
||
reply_content["content"],
|
||
reply_content["completion_tokens"],
|
||
)
|
||
)
|
||
if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0:
|
||
reply = Reply(ReplyType.ERROR, reply_content["content"])
|
||
elif reply_content["completion_tokens"] > 0:
|
||
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
|
||
reply = Reply(ReplyType.TEXT, reply_content["content"])
|
||
else:
|
||
reply = Reply(ReplyType.ERROR, reply_content["content"])
|
||
logger.debug("[MINIMAX] reply {} used 0 tokens.".format(reply_content))
|
||
return reply
|
||
else:
|
||
reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type))
|
||
return reply
|
||
|
||
def reply_text(self, session: MinimaxSession, args=None, retry_count=0) -> dict:
|
||
"""
|
||
Call MiniMax API to get the answer using REST API
|
||
:param session: a conversation session
|
||
:param args: request arguments
|
||
:param retry_count: retry count
|
||
:return: {}
|
||
"""
|
||
try:
|
||
if args is None:
|
||
args = self.args
|
||
|
||
# Build request
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {self.api_key}"
|
||
}
|
||
|
||
request_body = {
|
||
"model": args.get("model", self.args["model"]),
|
||
"messages": session.messages,
|
||
"temperature": args.get("temperature", self.args["temperature"]),
|
||
"top_p": args.get("top_p", self.args["top_p"]),
|
||
}
|
||
|
||
url = f"{self.api_base}/chat/completions"
|
||
logger.debug(f"[MINIMAX] Calling {url} with model={request_body['model']}")
|
||
|
||
response = requests.post(url, headers=headers, json=request_body, timeout=60)
|
||
|
||
if response.status_code == 200:
|
||
result = response.json()
|
||
content = result["choices"][0]["message"]["content"]
|
||
total_tokens = result["usage"]["total_tokens"]
|
||
completion_tokens = result["usage"]["completion_tokens"]
|
||
|
||
logger.debug(f"[MINIMAX] reply_text: content_length={len(content)}, tokens={total_tokens}")
|
||
|
||
return {
|
||
"total_tokens": total_tokens,
|
||
"completion_tokens": completion_tokens,
|
||
"content": content,
|
||
}
|
||
else:
|
||
error_msg = response.text
|
||
logger.error(f"[MINIMAX] API error: status={response.status_code}, msg={error_msg}")
|
||
|
||
# Parse error for better messages
|
||
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
|
||
need_retry = False
|
||
|
||
if response.status_code >= 500:
|
||
logger.warning(f"[MINIMAX] Server error, retry={retry_count}")
|
||
need_retry = retry_count < 2
|
||
elif response.status_code == 401:
|
||
result["content"] = "授权失败,请检查API Key是否正确"
|
||
need_retry = False
|
||
elif response.status_code == 429:
|
||
result["content"] = "请求过于频繁,请稍后再试"
|
||
need_retry = retry_count < 2
|
||
else:
|
||
need_retry = False
|
||
|
||
if need_retry:
|
||
time.sleep(3)
|
||
return self.reply_text(session, args, retry_count + 1)
|
||
else:
|
||
return result
|
||
|
||
except requests.exceptions.Timeout:
|
||
logger.error("[MINIMAX] Request timeout")
|
||
need_retry = retry_count < 2
|
||
result = {"completion_tokens": 0, "content": "请求超时,请稍后再试"}
|
||
if need_retry:
|
||
time.sleep(3)
|
||
return self.reply_text(session, args, retry_count + 1)
|
||
else:
|
||
return result
|
||
except Exception as e:
|
||
logger.error(f"[MINIMAX] reply_text error: {e}")
|
||
import traceback
|
||
logger.error(traceback.format_exc())
|
||
need_retry = retry_count < 2
|
||
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
|
||
if need_retry:
|
||
time.sleep(3)
|
||
return self.reply_text(session, args, retry_count + 1)
|
||
else:
|
||
return result
|
||
|
||
def call_with_tools(self, messages, tools=None, stream=False, **kwargs):
|
||
"""
|
||
Call MiniMax API with tool support for agent integration
|
||
|
||
This method handles:
|
||
1. Format conversion (Claude format → OpenAI format)
|
||
2. System prompt injection
|
||
3. API calling with REST API
|
||
4. Interleaved Thinking support (reasoning_split=True)
|
||
|
||
Args:
|
||
messages: List of messages (may be in Claude format from agent)
|
||
tools: List of tool definitions (may be in Claude format from agent)
|
||
stream: Whether to use streaming
|
||
**kwargs: Additional parameters (max_tokens, temperature, system, etc.)
|
||
|
||
Returns:
|
||
Formatted response or generator for streaming
|
||
"""
|
||
try:
|
||
# Convert messages from Claude format to OpenAI format
|
||
converted_messages = self._convert_messages_to_openai_format(messages)
|
||
|
||
# Extract and inject system prompt if provided
|
||
system_prompt = kwargs.pop("system", None)
|
||
if system_prompt:
|
||
# Add system message at the beginning
|
||
converted_messages.insert(0, {"role": "system", "content": system_prompt})
|
||
|
||
# Convert tools from Claude format to OpenAI format
|
||
converted_tools = None
|
||
if tools:
|
||
converted_tools = self._convert_tools_to_openai_format(tools)
|
||
|
||
# Prepare API parameters
|
||
model = kwargs.pop("model", None) or self.args["model"]
|
||
max_tokens = kwargs.pop("max_tokens", 4096)
|
||
temperature = kwargs.pop("temperature", self.args["temperature"])
|
||
|
||
# Build request body
|
||
request_body = {
|
||
"model": model,
|
||
"messages": converted_messages,
|
||
"max_tokens": max_tokens,
|
||
"temperature": temperature,
|
||
"stream": stream,
|
||
}
|
||
|
||
# Add tools if provided
|
||
if converted_tools:
|
||
request_body["tools"] = converted_tools
|
||
|
||
# Add reasoning_split=True for better thinking control (M2.1 feature)
|
||
# This separates thinking content into reasoning_details field
|
||
request_body["reasoning_split"] = True
|
||
|
||
logger.debug(f"[MINIMAX] API call: model={model}, tools={len(converted_tools) if converted_tools else 0}, stream={stream}")
|
||
|
||
# Check if we should show thinking process
|
||
show_thinking = kwargs.pop("show_thinking", conf().get("minimax_show_thinking", False))
|
||
|
||
if stream:
|
||
return self._handle_stream_response(request_body, show_thinking=show_thinking)
|
||
else:
|
||
return self._handle_sync_response(request_body)
|
||
|
||
except Exception as e:
|
||
logger.error(f"[MINIMAX] call_with_tools error: {e}")
|
||
import traceback
|
||
logger.error(traceback.format_exc())
|
||
|
||
def error_generator():
|
||
yield {"error": True, "message": str(e), "status_code": 500}
|
||
return error_generator()
|
||
|
||
def _convert_messages_to_openai_format(self, messages):
|
||
"""
|
||
Convert messages from Claude format to OpenAI format
|
||
|
||
Claude format:
|
||
- role: "user" | "assistant"
|
||
- content: string | list of content blocks
|
||
|
||
OpenAI format:
|
||
- role: "user" | "assistant" | "tool"
|
||
- content: string
|
||
- tool_calls: list (for assistant)
|
||
- tool_call_id: string (for tool results)
|
||
"""
|
||
converted = []
|
||
|
||
for msg in messages:
|
||
role = msg.get("role")
|
||
content = msg.get("content")
|
||
|
||
if role == "user":
|
||
# Handle user message
|
||
if isinstance(content, list):
|
||
# Extract text from content blocks
|
||
text_parts = []
|
||
tool_result = None
|
||
|
||
for block in content:
|
||
if isinstance(block, dict):
|
||
if block.get("type") == "text":
|
||
text_parts.append(block.get("text", ""))
|
||
elif block.get("type") == "tool_result":
|
||
# Tool result should be a separate message with role="tool"
|
||
tool_result = {
|
||
"role": "tool",
|
||
"tool_call_id": block.get("tool_use_id"),
|
||
"content": str(block.get("content", ""))
|
||
}
|
||
|
||
if text_parts:
|
||
converted.append({
|
||
"role": "user",
|
||
"content": "\n".join(text_parts)
|
||
})
|
||
|
||
if tool_result:
|
||
converted.append(tool_result)
|
||
else:
|
||
# Simple text content
|
||
converted.append({
|
||
"role": "user",
|
||
"content": str(content)
|
||
})
|
||
|
||
elif role == "assistant":
|
||
# Handle assistant message
|
||
openai_msg = {"role": "assistant"}
|
||
|
||
if isinstance(content, list):
|
||
# Parse content blocks
|
||
text_parts = []
|
||
tool_calls = []
|
||
|
||
for block in content:
|
||
if isinstance(block, dict):
|
||
if block.get("type") == "text":
|
||
text_parts.append(block.get("text", ""))
|
||
elif block.get("type") == "tool_use":
|
||
# Convert to OpenAI tool_calls format
|
||
tool_calls.append({
|
||
"id": block.get("id"),
|
||
"type": "function",
|
||
"function": {
|
||
"name": block.get("name"),
|
||
"arguments": json.dumps(block.get("input", {}))
|
||
}
|
||
})
|
||
|
||
# Set content (can be empty if only tool calls)
|
||
if text_parts:
|
||
openai_msg["content"] = "\n".join(text_parts)
|
||
elif not tool_calls:
|
||
openai_msg["content"] = ""
|
||
|
||
# Set tool_calls
|
||
if tool_calls:
|
||
openai_msg["tool_calls"] = tool_calls
|
||
# When tool_calls exist and content is empty, set to None
|
||
if not text_parts:
|
||
openai_msg["content"] = None
|
||
|
||
else:
|
||
# Simple text content
|
||
openai_msg["content"] = str(content) if content else ""
|
||
|
||
converted.append(openai_msg)
|
||
|
||
return converted
|
||
|
||
def _convert_tools_to_openai_format(self, tools):
|
||
"""
|
||
Convert tools from Claude format to OpenAI format
|
||
|
||
Claude format:
|
||
{
|
||
"name": "tool_name",
|
||
"description": "description",
|
||
"input_schema": {...}
|
||
}
|
||
|
||
OpenAI format:
|
||
{
|
||
"type": "function",
|
||
"function": {
|
||
"name": "tool_name",
|
||
"description": "description",
|
||
"parameters": {...}
|
||
}
|
||
}
|
||
"""
|
||
converted = []
|
||
|
||
for tool in tools:
|
||
converted.append({
|
||
"type": "function",
|
||
"function": {
|
||
"name": tool.get("name"),
|
||
"description": tool.get("description"),
|
||
"parameters": tool.get("input_schema", {})
|
||
}
|
||
})
|
||
|
||
return converted
|
||
|
||
def _handle_sync_response(self, request_body):
|
||
"""Handle synchronous API response"""
|
||
try:
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {self.api_key}"
|
||
}
|
||
|
||
# Remove stream from body for sync request
|
||
request_body.pop("stream", None)
|
||
|
||
url = f"{self.api_base}/chat/completions"
|
||
response = requests.post(url, headers=headers, json=request_body, timeout=60)
|
||
|
||
if response.status_code != 200:
|
||
error_msg = response.text
|
||
logger.error(f"[MINIMAX] API error: status={response.status_code}, msg={error_msg}")
|
||
yield {"error": True, "message": error_msg, "status_code": response.status_code}
|
||
return
|
||
|
||
result = response.json()
|
||
message = result["choices"][0]["message"]
|
||
finish_reason = result["choices"][0]["finish_reason"]
|
||
|
||
# Build response in Claude-like format
|
||
response_data = {
|
||
"role": "assistant",
|
||
"content": []
|
||
}
|
||
|
||
# Add reasoning_details (thinking) if present
|
||
if "reasoning_details" in message:
|
||
for reasoning in message["reasoning_details"]:
|
||
if "text" in reasoning:
|
||
response_data["content"].append({
|
||
"type": "thinking",
|
||
"thinking": reasoning["text"]
|
||
})
|
||
|
||
# Add text content if present
|
||
if message.get("content"):
|
||
response_data["content"].append({
|
||
"type": "text",
|
||
"text": message["content"]
|
||
})
|
||
|
||
# Add tool calls if present
|
||
if message.get("tool_calls"):
|
||
for tool_call in message["tool_calls"]:
|
||
response_data["content"].append({
|
||
"type": "tool_use",
|
||
"id": tool_call["id"],
|
||
"name": tool_call["function"]["name"],
|
||
"input": json.loads(tool_call["function"]["arguments"])
|
||
})
|
||
|
||
# Set stop_reason
|
||
if finish_reason == "tool_calls":
|
||
response_data["stop_reason"] = "tool_use"
|
||
elif finish_reason == "stop":
|
||
response_data["stop_reason"] = "end_turn"
|
||
else:
|
||
response_data["stop_reason"] = finish_reason
|
||
|
||
yield response_data
|
||
|
||
except requests.exceptions.Timeout:
|
||
logger.error("[MINIMAX] Request timeout")
|
||
yield {"error": True, "message": "Request timeout", "status_code": 500}
|
||
except Exception as e:
|
||
logger.error(f"[MINIMAX] sync response error: {e}")
|
||
import traceback
|
||
logger.error(traceback.format_exc())
|
||
yield {"error": True, "message": str(e), "status_code": 500}
|
||
|
||
def _handle_stream_response(self, request_body, show_thinking=False):
|
||
"""Handle streaming API response
|
||
|
||
Args:
|
||
request_body: API request parameters
|
||
show_thinking: Whether to show thinking/reasoning process to users
|
||
"""
|
||
try:
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {self.api_key}"
|
||
}
|
||
|
||
url = f"{self.api_base}/chat/completions"
|
||
response = requests.post(url, headers=headers, json=request_body, stream=True, timeout=60)
|
||
|
||
if response.status_code != 200:
|
||
error_msg = response.text
|
||
logger.error(f"[MINIMAX] API error: status={response.status_code}, msg={error_msg}")
|
||
yield {"error": True, "message": error_msg, "status_code": response.status_code}
|
||
return
|
||
|
||
current_content = []
|
||
current_tool_calls = {}
|
||
current_reasoning = []
|
||
finish_reason = None
|
||
chunk_count = 0
|
||
|
||
# Process SSE stream
|
||
for line in response.iter_lines():
|
||
if not line:
|
||
continue
|
||
|
||
line = line.decode('utf-8')
|
||
if not line.startswith('data: '):
|
||
continue
|
||
|
||
data_str = line[6:] # Remove 'data: ' prefix
|
||
if data_str.strip() == '[DONE]':
|
||
break
|
||
|
||
try:
|
||
chunk = json.loads(data_str)
|
||
chunk_count += 1
|
||
except json.JSONDecodeError as e:
|
||
logger.warning(f"[MINIMAX] JSON decode error: {e}, data: {data_str[:100]}")
|
||
continue
|
||
|
||
# Check for error response (MiniMax format)
|
||
if chunk.get("type") == "error" or "error" in chunk:
|
||
error_data = chunk.get("error", {})
|
||
error_msg = error_data.get("message", "Unknown error")
|
||
error_type = error_data.get("type", "")
|
||
http_code = error_data.get("http_code", "")
|
||
|
||
logger.error(f"[MINIMAX] API error: {error_msg} (type: {error_type}, code: {http_code})")
|
||
|
||
yield {
|
||
"error": True,
|
||
"message": error_msg,
|
||
"status_code": int(http_code) if http_code.isdigit() else 500
|
||
}
|
||
return
|
||
|
||
if not chunk.get("choices"):
|
||
continue
|
||
|
||
choice = chunk["choices"][0]
|
||
delta = choice.get("delta", {})
|
||
|
||
# Handle reasoning_details (thinking)
|
||
if "reasoning_details" in delta:
|
||
for reasoning in delta["reasoning_details"]:
|
||
if "text" in reasoning:
|
||
reasoning_id = reasoning.get("id", "reasoning-text-1")
|
||
reasoning_index = reasoning.get("index", 0)
|
||
reasoning_text = reasoning["text"]
|
||
|
||
# Accumulate reasoning text
|
||
if reasoning_index >= len(current_reasoning):
|
||
current_reasoning.append({"id": reasoning_id, "text": ""})
|
||
|
||
current_reasoning[reasoning_index]["text"] += reasoning_text
|
||
|
||
# Optionally yield thinking as visible content
|
||
if show_thinking:
|
||
# Format thinking text for display
|
||
formatted_thinking = f"💭 {reasoning_text}"
|
||
|
||
# Yield as OpenAI-format content delta
|
||
yield {
|
||
"choices": [{
|
||
"index": 0,
|
||
"delta": {
|
||
"role": "assistant",
|
||
"content": formatted_thinking
|
||
}
|
||
}]
|
||
}
|
||
|
||
# Handle text content
|
||
if "content" in delta and delta["content"]:
|
||
# Start new content block if needed
|
||
if not any(block.get("type") == "text" for block in current_content):
|
||
current_content.append({"type": "text", "text": ""})
|
||
|
||
# Accumulate text
|
||
for block in current_content:
|
||
if block.get("type") == "text":
|
||
block["text"] += delta["content"]
|
||
break
|
||
|
||
# Yield OpenAI-format delta (for agent_stream.py compatibility)
|
||
yield {
|
||
"choices": [{
|
||
"index": 0,
|
||
"delta": {
|
||
"role": "assistant",
|
||
"content": delta["content"]
|
||
}
|
||
}]
|
||
}
|
||
|
||
# Handle tool calls
|
||
if "tool_calls" in delta:
|
||
for tool_call_chunk in delta["tool_calls"]:
|
||
index = tool_call_chunk.get("index", 0)
|
||
if index not in current_tool_calls:
|
||
# Start new tool call
|
||
current_tool_calls[index] = {
|
||
"id": tool_call_chunk.get("id", ""),
|
||
"type": "tool_use",
|
||
"name": tool_call_chunk.get("function", {}).get("name", ""),
|
||
"input": ""
|
||
}
|
||
|
||
# Accumulate tool call arguments
|
||
if "function" in tool_call_chunk and "arguments" in tool_call_chunk["function"]:
|
||
current_tool_calls[index]["input"] += tool_call_chunk["function"]["arguments"]
|
||
|
||
# Yield OpenAI-format tool call delta
|
||
yield {
|
||
"choices": [{
|
||
"index": 0,
|
||
"delta": {
|
||
"tool_calls": [tool_call_chunk]
|
||
}
|
||
}]
|
||
}
|
||
|
||
# Handle finish_reason
|
||
if choice.get("finish_reason"):
|
||
finish_reason = choice["finish_reason"]
|
||
|
||
# Log complete reasoning_details for debugging
|
||
if current_reasoning:
|
||
logger.debug(f"[MINIMAX] ===== Complete Reasoning Details =====")
|
||
for i, reasoning in enumerate(current_reasoning):
|
||
reasoning_text = reasoning.get("text", "")
|
||
logger.debug(f"[MINIMAX] Reasoning {i+1} (length={len(reasoning_text)}):")
|
||
logger.debug(f"[MINIMAX] {reasoning_text}")
|
||
logger.debug(f"[MINIMAX] ===== End Reasoning Details =====")
|
||
|
||
# Yield final chunk with finish_reason (OpenAI format)
|
||
yield {
|
||
"choices": [{
|
||
"index": 0,
|
||
"delta": {},
|
||
"finish_reason": finish_reason
|
||
}]
|
||
}
|
||
|
||
except requests.exceptions.Timeout:
|
||
logger.error("[MINIMAX] Request timeout")
|
||
yield {"error": True, "message": "Request timeout", "status_code": 500}
|
||
except Exception as e:
|
||
logger.error(f"[MINIMAX] stream response error: {e}")
|
||
import traceback
|
||
logger.error(traceback.format_exc())
|
||
yield {"error": True, "message": str(e), "status_code": 500}
|