Files
chatgpt-on-wechat/models/linkai/link_ai_bot.py
2026-02-01 15:21:28 +08:00

647 lines
28 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# access LinkAI knowledge base platform
# docs: https://link-ai.tech/platform/link-app/wechat
import re
import time
import requests
import json
import config
from models.bot import Bot
from models.openai_compatible_bot import OpenAICompatibleBot
from models.chatgpt.chat_gpt_session import ChatGPTSession
from models.session_manager import SessionManager
from bridge.context import Context, ContextType
from bridge.reply import Reply, ReplyType
from common.log import logger
from config import conf, pconf
import threading
from common import memory, utils
import base64
import os
class LinkAIBot(Bot, OpenAICompatibleBot):
# authentication failed
AUTH_FAILED_CODE = 401
NO_QUOTA_CODE = 406
def __init__(self):
super().__init__()
self.sessions = LinkAISessionManager(LinkAISession, model=conf().get("model") or "gpt-3.5-turbo")
self.args = {}
def get_api_config(self):
"""Get API configuration for OpenAI-compatible base class"""
return {
'api_key': conf().get("open_ai_api_key"), # LinkAI uses OpenAI-compatible key
'api_base': conf().get("open_ai_api_base", "https://api.link-ai.tech/v1"),
'model': conf().get("model", "gpt-3.5-turbo"),
'default_temperature': conf().get("temperature", 0.9),
'default_top_p': conf().get("top_p", 1.0),
'default_frequency_penalty': conf().get("frequency_penalty", 0.0),
'default_presence_penalty': conf().get("presence_penalty", 0.0),
}
def reply(self, query, context: Context = None) -> Reply:
if context.type == ContextType.TEXT:
return self._chat(query, context)
elif context.type == ContextType.IMAGE_CREATE:
if not conf().get("text_to_image"):
logger.warn("[LinkAI] text_to_image is not enabled, ignore the IMAGE_CREATE request")
return Reply(ReplyType.TEXT, "")
ok, res = self.create_img(query, 0)
if ok:
reply = Reply(ReplyType.IMAGE_URL, res)
else:
reply = Reply(ReplyType.ERROR, res)
return reply
else:
reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type))
return reply
def _chat(self, query, context, retry_count=0) -> Reply:
"""
发起对话请求
:param query: 请求提示词
:param context: 对话上下文
:param retry_count: 当前递归重试次数
:return: 回复
"""
if retry_count > 2:
# exit from retry 2 times
logger.warn("[LINKAI] failed after maximum number of retry times")
return Reply(ReplyType.TEXT, "请再问我一次吧")
try:
# load config
if context.get("generate_breaked_by"):
logger.info(f"[LINKAI] won't set appcode because a plugin ({context['generate_breaked_by']}) affected the context")
app_code = None
else:
plugin_app_code = self._find_group_mapping_code(context)
app_code = context.kwargs.get("app_code") or plugin_app_code or conf().get("linkai_app_code")
linkai_api_key = conf().get("linkai_api_key")
session_id = context["session_id"]
session_message = self.sessions.session_msg_query(query, session_id)
logger.debug(f"[LinkAI] session={session_message}, session_id={session_id}")
# image process
img_cache = memory.USER_IMAGE_CACHE.get(session_id)
if img_cache:
messages = self._process_image_msg(app_code=app_code, session_id=session_id, query=query, img_cache=img_cache)
if messages:
session_message = messages
model = conf().get("model")
# remove system message
if session_message[0].get("role") == "system":
if app_code or model == "wenxin":
session_message.pop(0)
body = {
"app_code": app_code,
"messages": session_message,
"model": model, # 对话模型的名称, 支持 gpt-3.5-turbo, gpt-3.5-turbo-16k, gpt-4, wenxin, xunfei
"temperature": conf().get("temperature"),
"top_p": conf().get("top_p", 1),
"frequency_penalty": conf().get("frequency_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容
"presence_penalty": conf().get("presence_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容
"session_id": session_id,
"sender_id": session_id,
"channel_type": conf().get("channel_type", "wx")
}
try:
from linkai import LinkAIClient
client_id = LinkAIClient.fetch_client_id()
if client_id:
body["client_id"] = client_id
# start: client info deliver
if context.kwargs.get("msg"):
body["session_id"] = context.kwargs.get("msg").from_user_id
if context.kwargs.get("msg").is_group:
body["is_group"] = True
body["group_name"] = context.kwargs.get("msg").from_user_nickname
body["sender_name"] = context.kwargs.get("msg").actual_user_nickname
else:
if body.get("channel_type") in ["wechatcom_app"]:
body["sender_name"] = context.kwargs.get("msg").from_user_id
else:
body["sender_name"] = context.kwargs.get("msg").from_user_nickname
except Exception as e:
pass
file_id = context.kwargs.get("file_id")
if file_id:
body["file_id"] = file_id
logger.info(f"[LINKAI] query={query}, app_code={app_code}, model={body.get('model')}, file_id={file_id}")
headers = {"Authorization": "Bearer " + linkai_api_key}
# do http request
base_url = conf().get("linkai_api_base", "https://api.link-ai.tech")
res = requests.post(url=base_url + "/v1/chat/completions", json=body, headers=headers,
timeout=conf().get("request_timeout", 180))
if res.status_code == 200:
# execute success
response = res.json()
reply_content = response["choices"][0]["message"]["content"]
total_tokens = response["usage"]["total_tokens"]
res_code = response.get('code')
logger.info(f"[LINKAI] reply={reply_content}, total_tokens={total_tokens}, res_code={res_code}")
if res_code == 429:
logger.warn(f"[LINKAI] 用户访问超出限流配置sender_id={body.get('sender_id')}")
else:
self.sessions.session_reply(reply_content, session_id, total_tokens, query=query)
agent_suffix = self._fetch_agent_suffix(response)
if agent_suffix:
reply_content += agent_suffix
if not agent_suffix:
knowledge_suffix = self._fetch_knowledge_search_suffix(response)
if knowledge_suffix:
reply_content += knowledge_suffix
# image process
if response["choices"][0].get("img_urls"):
thread = threading.Thread(target=self._send_image, args=(context.get("channel"), context, response["choices"][0].get("img_urls")))
thread.start()
reply_content = response["choices"][0].get("text_content")
if reply_content:
reply_content = self._process_url(reply_content)
return Reply(ReplyType.TEXT, reply_content)
else:
response = res.json()
error = response.get("error")
logger.error(f"[LINKAI] chat failed, status_code={res.status_code}, "
f"msg={error.get('message')}, type={error.get('type')}")
if res.status_code >= 500:
# server error, need retry
time.sleep(2)
logger.warn(f"[LINKAI] do retry, times={retry_count}")
return self._chat(query, context, retry_count + 1)
error_reply = "提问太快啦,请休息一下再问我吧"
if res.status_code == 409:
error_reply = "这个问题我还没有学会,请问我其它问题吧"
return Reply(ReplyType.TEXT, error_reply)
except Exception as e:
logger.exception(e)
# retry
time.sleep(2)
logger.warn(f"[LINKAI] do retry, times={retry_count}")
return self._chat(query, context, retry_count + 1)
def _process_image_msg(self, app_code: str, session_id: str, query:str, img_cache: dict):
try:
enable_image_input = False
app_info = self._fetch_app_info(app_code)
if not app_info:
logger.debug(f"[LinkAI] not found app, can't process images, app_code={app_code}")
return None
plugins = app_info.get("data").get("plugins")
for plugin in plugins:
if plugin.get("input_type") and "IMAGE" in plugin.get("input_type"):
enable_image_input = True
if not enable_image_input:
return
msg = img_cache.get("msg")
path = img_cache.get("path")
msg.prepare()
logger.info(f"[LinkAI] query with images, path={path}")
messages = self._build_vision_msg(query, path)
memory.USER_IMAGE_CACHE[session_id] = None
return messages
except Exception as e:
logger.exception(e)
def _find_group_mapping_code(self, context):
try:
if context.kwargs.get("isgroup"):
group_name = context.kwargs.get("msg").from_user_nickname
if config.plugin_config and config.plugin_config.get("linkai"):
linkai_config = config.plugin_config.get("linkai")
group_mapping = linkai_config.get("group_app_map")
if group_mapping and group_name:
return group_mapping.get(group_name)
except Exception as e:
logger.exception(e)
return None
def _build_vision_msg(self, query: str, path: str):
try:
suffix = utils.get_path_suffix(path)
with open(path, "rb") as file:
base64_str = base64.b64encode(file.read()).decode('utf-8')
messages = [{
"role": "user",
"content": [
{
"type": "text",
"text": query
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/{suffix};base64,{base64_str}"
}
}
]
}]
return messages
except Exception as e:
logger.exception(e)
def reply_text(self, session: ChatGPTSession, app_code="", retry_count=0) -> dict:
if retry_count >= 2:
# exit from retry 2 times
logger.warn("[LINKAI] failed after maximum number of retry times")
return {
"total_tokens": 0,
"completion_tokens": 0,
"content": "请再问我一次吧"
}
try:
body = {
"app_code": app_code,
"messages": session.messages,
"model": conf().get("model") or "gpt-3.5-turbo", # 对话模型的名称, 支持 gpt-3.5-turbo, gpt-3.5-turbo-16k, gpt-4, wenxin, xunfei
"temperature": conf().get("temperature"),
"top_p": conf().get("top_p", 1),
"frequency_penalty": conf().get("frequency_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容
"presence_penalty": conf().get("presence_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容
}
if self.args.get("max_tokens"):
body["max_tokens"] = self.args.get("max_tokens")
headers = {"Authorization": "Bearer " + conf().get("linkai_api_key")}
# do http request
base_url = conf().get("linkai_api_base", "https://api.link-ai.tech")
res = requests.post(url=base_url + "/v1/chat/completions", json=body, headers=headers,
timeout=conf().get("request_timeout", 180))
if res.status_code == 200:
# execute success
response = res.json()
reply_content = response["choices"][0]["message"]["content"]
total_tokens = response["usage"]["total_tokens"]
logger.info(f"[LINKAI] reply={reply_content}, total_tokens={total_tokens}")
return {
"total_tokens": total_tokens,
"completion_tokens": response["usage"]["completion_tokens"],
"content": reply_content,
}
else:
response = res.json()
error = response.get("error")
logger.error(f"[LINKAI] chat failed, status_code={res.status_code}, "
f"msg={error.get('message')}, type={error.get('type')}")
if res.status_code >= 500:
# server error, need retry
time.sleep(2)
logger.warn(f"[LINKAI] do retry, times={retry_count}")
return self.reply_text(session, app_code, retry_count + 1)
return {
"total_tokens": 0,
"completion_tokens": 0,
"content": "提问太快啦,请休息一下再问我吧"
}
except Exception as e:
logger.exception(e)
# retry
time.sleep(2)
logger.warn(f"[LINKAI] do retry, times={retry_count}")
return self.reply_text(session, app_code, retry_count + 1)
def _fetch_app_info(self, app_code: str):
headers = {"Authorization": "Bearer " + conf().get("linkai_api_key")}
# do http request
base_url = conf().get("linkai_api_base", "https://api.link-ai.tech")
params = {"app_code": app_code}
res = requests.get(url=base_url + "/v1/app/info", params=params, headers=headers, timeout=(5, 10))
if res.status_code == 200:
return res.json()
else:
logger.warning(f"[LinkAI] find app info exception, res={res}")
def create_img(self, query, retry_count=0, api_key=None):
try:
logger.info("[LinkImage] image_query={}".format(query))
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {conf().get('linkai_api_key')}"
}
data = {
"prompt": query,
"n": 1,
"model": conf().get("text_to_image") or "dall-e-2",
"response_format": "url",
"img_proxy": conf().get("image_proxy")
}
url = conf().get("linkai_api_base", "https://api.link-ai.tech") + "/v1/images/generations"
res = requests.post(url, headers=headers, json=data, timeout=(5, 90))
t2 = time.time()
image_url = res.json()["data"][0]["url"]
logger.info("[OPEN_AI] image_url={}".format(image_url))
return True, image_url
except Exception as e:
logger.error(format(e))
return False, "画图出现问题,请休息一下再问我吧"
def _fetch_knowledge_search_suffix(self, response) -> str:
try:
if response.get("knowledge_base"):
search_hit = response.get("knowledge_base").get("search_hit")
first_similarity = response.get("knowledge_base").get("first_similarity")
logger.info(f"[LINKAI] knowledge base, search_hit={search_hit}, first_similarity={first_similarity}")
plugin_config = pconf("linkai")
if plugin_config and plugin_config.get("knowledge_base") and plugin_config.get("knowledge_base").get("search_miss_text_enabled"):
search_miss_similarity = plugin_config.get("knowledge_base").get("search_miss_similarity")
search_miss_text = plugin_config.get("knowledge_base").get("search_miss_suffix")
if not search_hit:
return search_miss_text
if search_miss_similarity and float(search_miss_similarity) > first_similarity:
return search_miss_text
except Exception as e:
logger.exception(e)
def _fetch_agent_suffix(self, response):
try:
plugin_list = []
logger.debug(f"[LinkAgent] res={response}")
if response.get("agent") and response.get("agent").get("chain") and response.get("agent").get("need_show_plugin"):
chain = response.get("agent").get("chain")
suffix = "\n\n- - - - - - - - - - - -"
i = 0
for turn in chain:
plugin_name = turn.get('plugin_name')
suffix += "\n"
need_show_thought = response.get("agent").get("need_show_thought")
if turn.get("thought") and plugin_name and need_show_thought:
suffix += f"{turn.get('thought')}\n"
if plugin_name:
plugin_list.append(turn.get('plugin_name'))
if turn.get('plugin_icon'):
suffix += f"{turn.get('plugin_icon')} "
suffix += f"{turn.get('plugin_name')}"
if turn.get('plugin_input'):
suffix += f"{turn.get('plugin_input')}"
if i < len(chain) - 1:
suffix += "\n"
i += 1
logger.info(f"[LinkAgent] use plugins: {plugin_list}")
return suffix
except Exception as e:
logger.exception(e)
def _process_url(self, text):
try:
url_pattern = re.compile(r'\[(.*?)\]\((http[s]?://.*?)\)')
def replace_markdown_url(match):
return f"{match.group(2)}"
return url_pattern.sub(replace_markdown_url, text)
except Exception as e:
logger.error(e)
def _send_image(self, channel, context, image_urls):
if not image_urls:
return
max_send_num = conf().get("max_media_send_count")
send_interval = conf().get("media_send_interval")
file_type = (".pdf", ".doc", ".docx", ".csv", ".xls", ".xlsx", ".txt", ".rtf", ".ppt", ".pptx")
try:
i = 0
for url in image_urls:
if max_send_num and i >= max_send_num:
continue
i += 1
if url.endswith(".mp4"):
reply_type = ReplyType.VIDEO_URL
elif url.endswith(file_type):
reply_type = ReplyType.FILE
url = _download_file(url)
if not url:
continue
else:
reply_type = ReplyType.IMAGE_URL
reply = Reply(reply_type, url)
channel.send(reply, context)
if send_interval:
time.sleep(send_interval)
except Exception as e:
logger.error(e)
def _download_file(url: str):
try:
file_path = "tmp"
if not os.path.exists(file_path):
os.makedirs(file_path)
file_name = url.split("/")[-1] # 获取文件名
file_path = os.path.join(file_path, file_name)
response = requests.get(url)
with open(file_path, "wb") as f:
f.write(response.content)
return file_path
except Exception as e:
logger.warn(e)
class LinkAISessionManager(SessionManager):
def session_msg_query(self, query, session_id):
session = self.build_session(session_id)
messages = session.messages + [{"role": "user", "content": query}]
return messages
def session_reply(self, reply, session_id, total_tokens=None, query=None):
session = self.build_session(session_id)
if query:
session.add_query(query)
session.add_reply(reply)
try:
max_tokens = conf().get("conversation_max_tokens", 8000)
tokens_cnt = session.discard_exceeding(max_tokens, total_tokens)
logger.debug(f"[LinkAI] chat history, before tokens={total_tokens}, now tokens={tokens_cnt}")
except Exception as e:
logger.warning("Exception when counting tokens precisely for session: {}".format(str(e)))
return session
class LinkAISession(ChatGPTSession):
def calc_tokens(self):
if not self.messages:
return 0
return len(str(self.messages))
def discard_exceeding(self, max_tokens, cur_tokens=None):
cur_tokens = self.calc_tokens()
if cur_tokens > max_tokens:
for i in range(0, len(self.messages)):
if i > 0 and self.messages[i].get("role") == "assistant" and self.messages[i - 1].get("role") == "user":
self.messages.pop(i)
self.messages.pop(i - 1)
return self.calc_tokens()
return cur_tokens
# Add call_with_tools method to LinkAIBot class
def _linkai_call_with_tools(self, messages, tools=None, stream=False, **kwargs):
"""
Call LinkAI API with tool support for agent integration
LinkAI is fully compatible with OpenAI's tool calling format
Args:
messages: List of messages
tools: List of tool definitions (OpenAI format)
stream: Whether to use streaming
**kwargs: Additional parameters (max_tokens, temperature, etc.)
Returns:
Formatted response in OpenAI format or generator for streaming
"""
try:
# Convert messages from Claude format to OpenAI format
# This is important because Agent uses Claude format internally
messages = self._convert_messages_to_openai_format(messages)
# Convert tools from Claude format to OpenAI format
if tools:
tools = self._convert_tools_to_openai_format(tools)
# Handle system prompt (OpenAI uses system message, Claude uses separate parameter)
system_prompt = kwargs.get('system')
if system_prompt:
# Add system message at the beginning if not already present
if not messages or messages[0].get('role') != 'system':
messages = [{"role": "system", "content": system_prompt}] + messages
else:
# Replace existing system message
messages[0] = {"role": "system", "content": system_prompt}
logger.debug(f"[LinkAI] messages: {len(messages)}, tools: {len(tools) if tools else 0}, stream: {stream}")
# Build request parameters (LinkAI uses OpenAI-compatible format)
body = {
"messages": messages,
"model": kwargs.get("model", conf().get("model") or "gpt-3.5-turbo"),
"temperature": kwargs.get("temperature", conf().get("temperature", 0.9)),
"top_p": kwargs.get("top_p", conf().get("top_p", 1)),
"frequency_penalty": kwargs.get("frequency_penalty", conf().get("frequency_penalty", 0.0)),
"presence_penalty": kwargs.get("presence_penalty", conf().get("presence_penalty", 0.0)),
"stream": stream
}
if tools:
body["tools"] = tools
body["tool_choice"] = kwargs.get("tool_choice", "auto")
# Prepare headers
headers = {"Authorization": "Bearer " + conf().get("linkai_api_key")}
base_url = conf().get("linkai_api_base", "https://api.link-ai.tech")
if stream:
return self._handle_linkai_stream_response(base_url, headers, body)
else:
return self._handle_linkai_sync_response(base_url, headers, body)
except Exception as e:
logger.error(f"[LinkAI] call_with_tools error: {e}")
if stream:
def error_generator():
yield {
"error": True,
"message": str(e),
"status_code": 500
}
return error_generator()
else:
return {
"error": True,
"message": str(e),
"status_code": 500
}
def _handle_linkai_sync_response(self, base_url, headers, body):
"""Handle synchronous LinkAI API response"""
try:
res = requests.post(
url=base_url + "/v1/chat/completions",
json=body,
headers=headers,
timeout=conf().get("request_timeout", 180)
)
if res.status_code == 200:
response = res.json()
logger.debug(f"[LinkAI] reply: model={response.get('model')}, "
f"tokens={response.get('usage', {}).get('total_tokens', 0)}")
# LinkAI response is already in OpenAI-compatible format
return response
else:
error_data = res.json()
error_msg = error_data.get("error", {}).get("message", "Unknown error")
raise Exception(f"LinkAI API error: {res.status_code} - {error_msg}")
except Exception as e:
logger.error(f"[LinkAI] sync response error: {e}")
raise
def _handle_linkai_stream_response(self, base_url, headers, body):
"""Handle streaming LinkAI API response"""
try:
res = requests.post(
url=base_url + "/v1/chat/completions",
json=body,
headers=headers,
timeout=conf().get("request_timeout", 180),
stream=True
)
if res.status_code != 200:
error_text = res.text
try:
error_data = json.loads(error_text)
error_msg = error_data.get("error", {}).get("message", error_text)
except:
error_msg = error_text or "Unknown error"
yield {
"error": True,
"status_code": res.status_code,
"message": error_msg
}
return
# Process streaming response (OpenAI-compatible SSE format)
for line in res.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
line = line[6:] # Remove 'data: ' prefix
if line == '[DONE]':
break
try:
chunk = json.loads(line)
yield chunk
except json.JSONDecodeError:
continue
except Exception as e:
logger.error(f"[LinkAI] stream response error: {e}")
yield {
"error": True,
"message": str(e),
"status_code": 500
}
# Attach methods to LinkAIBot class
LinkAIBot.call_with_tools = _linkai_call_with_tools
LinkAIBot._handle_linkai_sync_response = _handle_linkai_sync_response
LinkAIBot._handle_linkai_stream_response = _handle_linkai_stream_response