mirror of
https://github.com/zhayujie/chatgpt-on-wechat.git
synced 2026-02-21 08:09:41 +08:00
188 lines
7.6 KiB
Python
188 lines
7.6 KiB
Python
# encoding:utf-8
|
|
|
|
from bot.bot import Bot
|
|
from config import conf, load_config
|
|
from common.log import logger
|
|
from common.expired_dict import ExpiredDict
|
|
import openai
|
|
import time
|
|
|
|
if conf().get('expires_in_seconds'):
|
|
all_sessions = ExpiredDict(conf().get('expires_in_seconds'))
|
|
else:
|
|
all_sessions = dict()
|
|
|
|
# OpenAI对话模型API (可用)
|
|
class ChatGPTBot(Bot):
|
|
def __init__(self):
|
|
openai.api_key = conf().get('open_ai_api_key')
|
|
if conf().get('open_ai_api_base'):
|
|
openai.api_base = conf().get('open_ai_api_base')
|
|
proxy = conf().get('proxy')
|
|
if proxy:
|
|
openai.proxy = proxy
|
|
|
|
def reply(self, query, context=None):
|
|
# acquire reply content
|
|
if not context or not context.get('type') or context.get('type') == 'TEXT':
|
|
logger.info("[OPEN_AI] query={}".format(query))
|
|
session_id = context.get('session_id') or context.get('from_user_id')
|
|
if query == '#清除记忆':
|
|
Session.clear_session(session_id)
|
|
return '记忆已清除'
|
|
elif query == '#清除所有':
|
|
Session.clear_all_session()
|
|
return '所有人记忆已清除'
|
|
elif query == '#更新配置':
|
|
load_config()
|
|
return '配置已更新'
|
|
|
|
session = Session.build_session_query(query, session_id)
|
|
logger.debug("[OPEN_AI] session query={}".format(session))
|
|
|
|
# if context.get('stream'):
|
|
# # reply in stream
|
|
# return self.reply_text_stream(query, new_query, session_id)
|
|
|
|
reply_content = self.reply_text(session, session_id, 0)
|
|
logger.debug("[OPEN_AI] new_query={}, session_id={}, reply_cont={}".format(session, session_id, reply_content["content"]))
|
|
if reply_content["completion_tokens"] > 0:
|
|
Session.save_session(reply_content["content"], session_id, reply_content["total_tokens"])
|
|
return reply_content["content"]
|
|
|
|
elif context.get('type', None) == 'IMAGE_CREATE':
|
|
return self.create_img(query, 0)
|
|
|
|
def reply_text(self, session, session_id, retry_count=0) ->dict:
|
|
'''
|
|
call openai's ChatCompletion to get the answer
|
|
:param session: a conversation session
|
|
:param session_id: session id
|
|
:param retry_count: retry count
|
|
:return: {}
|
|
'''
|
|
try:
|
|
response = openai.ChatCompletion.create(
|
|
model="gpt-3.5-turbo", # 对话模型的名称
|
|
messages=session,
|
|
temperature=0.9, # 值在[0,1]之间,越大表示回复越具有不确定性
|
|
#max_tokens=4096, # 回复最大的字符数
|
|
top_p=1,
|
|
frequency_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
|
|
presence_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
|
|
)
|
|
# logger.info("[ChatGPT] reply={}, total_tokens={}".format(response.choices[0]['message']['content'], response["usage"]["total_tokens"]))
|
|
return {"total_tokens": response["usage"]["total_tokens"],
|
|
"completion_tokens": response["usage"]["completion_tokens"],
|
|
"content": response.choices[0]['message']['content']}
|
|
except openai.error.RateLimitError as e:
|
|
# rate limit exception
|
|
logger.warn(e)
|
|
if retry_count < 1:
|
|
time.sleep(5)
|
|
logger.warn("[OPEN_AI] RateLimit exceed, 第{}次重试".format(retry_count+1))
|
|
return self.reply_text(session, session_id, retry_count+1)
|
|
else:
|
|
return {"completion_tokens": 0, "content": "提问太快啦,请休息一下再问我吧"}
|
|
except openai.error.APIConnectionError as e:
|
|
# api connection exception
|
|
logger.warn(e)
|
|
logger.warn("[OPEN_AI] APIConnection failed")
|
|
return {"completion_tokens": 0, "content":"我连接不到你的网络"}
|
|
except openai.error.Timeout as e:
|
|
logger.warn(e)
|
|
logger.warn("[OPEN_AI] Timeout")
|
|
return {"completion_tokens": 0, "content":"我没有收到你的消息"}
|
|
except Exception as e:
|
|
# unknown exception
|
|
logger.exception(e)
|
|
Session.clear_session(session_id)
|
|
return {"completion_tokens": 0, "content": "请再问我一次吧"}
|
|
|
|
def create_img(self, query, retry_count=0):
|
|
try:
|
|
logger.info("[OPEN_AI] image_query={}".format(query))
|
|
response = openai.Image.create(
|
|
prompt=query, #图片描述
|
|
n=1, #每次生成图片的数量
|
|
size="256x256" #图片大小,可选有 256x256, 512x512, 1024x1024
|
|
)
|
|
image_url = response['data'][0]['url']
|
|
logger.info("[OPEN_AI] image_url={}".format(image_url))
|
|
return image_url
|
|
except openai.error.RateLimitError as e:
|
|
logger.warn(e)
|
|
if retry_count < 1:
|
|
time.sleep(5)
|
|
logger.warn("[OPEN_AI] ImgCreate RateLimit exceed, 第{}次重试".format(retry_count+1))
|
|
return self.create_img(query, retry_count+1)
|
|
else:
|
|
return "提问太快啦,请休息一下再问我吧"
|
|
except Exception as e:
|
|
logger.exception(e)
|
|
return None
|
|
|
|
class Session(object):
|
|
@staticmethod
|
|
def build_session_query(query, session_id):
|
|
'''
|
|
build query with conversation history
|
|
e.g. [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "Who won the world series in 2020?"},
|
|
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
|
|
{"role": "user", "content": "Where was it played?"}
|
|
]
|
|
:param query: query content
|
|
:param session_id: session id
|
|
:return: query content with conversaction
|
|
'''
|
|
session = all_sessions.get(session_id, [])
|
|
if len(session) == 0:
|
|
system_prompt = conf().get("character_desc", "")
|
|
system_item = {'role': 'system', 'content': system_prompt}
|
|
session.append(system_item)
|
|
all_sessions[session_id] = session
|
|
user_item = {'role': 'user', 'content': query}
|
|
session.append(user_item)
|
|
return session
|
|
|
|
@staticmethod
|
|
def save_session(answer, session_id, total_tokens):
|
|
max_tokens = conf().get("conversation_max_tokens")
|
|
if not max_tokens:
|
|
# default 3000
|
|
max_tokens = 1000
|
|
max_tokens=int(max_tokens)
|
|
|
|
session = all_sessions.get(session_id)
|
|
if session:
|
|
# append conversation
|
|
gpt_item = {'role': 'assistant', 'content': answer}
|
|
session.append(gpt_item)
|
|
|
|
# discard exceed limit conversation
|
|
Session.discard_exceed_conversation(session, max_tokens, total_tokens)
|
|
|
|
|
|
@staticmethod
|
|
def discard_exceed_conversation(session, max_tokens, total_tokens):
|
|
dec_tokens = int(total_tokens)
|
|
# logger.info("prompt tokens used={},max_tokens={}".format(used_tokens,max_tokens))
|
|
while dec_tokens > max_tokens:
|
|
# pop first conversation
|
|
if len(session) > 3:
|
|
session.pop(1)
|
|
session.pop(1)
|
|
else:
|
|
break
|
|
dec_tokens = dec_tokens - max_tokens
|
|
|
|
@staticmethod
|
|
def clear_session(session_id):
|
|
all_sessions[session_id] = []
|
|
|
|
@staticmethod
|
|
def clear_all_session():
|
|
all_sessions.clear()
|