mirror of
https://github.com/zhayujie/chatgpt-on-wechat.git
synced 2026-02-19 17:10:03 +08:00
215 lines
9.3 KiB
Python
215 lines
9.3 KiB
Python
# encoding:utf-8
|
||
|
||
import json
|
||
import time
|
||
from typing import List, Tuple
|
||
|
||
import openai
|
||
import openai.error
|
||
import broadscope_bailian
|
||
from broadscope_bailian import ChatQaMessage
|
||
|
||
from models.bot import Bot
|
||
from models.ali.ali_qwen_session import AliQwenSession
|
||
from models.session_manager import SessionManager
|
||
from bridge.context import ContextType
|
||
from bridge.reply import Reply, ReplyType
|
||
from common.log import logger
|
||
from common import const
|
||
from config import conf, load_config
|
||
|
||
class AliQwenBot(Bot):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.api_key_expired_time = self.set_api_key()
|
||
self.sessions = SessionManager(AliQwenSession, model=conf().get("model", const.QWEN))
|
||
|
||
def api_key_client(self):
|
||
return broadscope_bailian.AccessTokenClient(access_key_id=self.access_key_id(), access_key_secret=self.access_key_secret())
|
||
|
||
def access_key_id(self):
|
||
return conf().get("qwen_access_key_id")
|
||
|
||
def access_key_secret(self):
|
||
return conf().get("qwen_access_key_secret")
|
||
|
||
def agent_key(self):
|
||
return conf().get("qwen_agent_key")
|
||
|
||
def app_id(self):
|
||
return conf().get("qwen_app_id")
|
||
|
||
def node_id(self):
|
||
return conf().get("qwen_node_id", "")
|
||
|
||
def temperature(self):
|
||
return conf().get("temperature", 0.2 )
|
||
|
||
def top_p(self):
|
||
return conf().get("top_p", 1)
|
||
|
||
def reply(self, query, context=None):
|
||
# acquire reply content
|
||
if context.type == ContextType.TEXT:
|
||
logger.info("[QWEN] query={}".format(query))
|
||
|
||
session_id = context["session_id"]
|
||
reply = None
|
||
clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"])
|
||
if query in clear_memory_commands:
|
||
self.sessions.clear_session(session_id)
|
||
reply = Reply(ReplyType.INFO, "记忆已清除")
|
||
elif query == "#清除所有":
|
||
self.sessions.clear_all_session()
|
||
reply = Reply(ReplyType.INFO, "所有人记忆已清除")
|
||
elif query == "#更新配置":
|
||
load_config()
|
||
reply = Reply(ReplyType.INFO, "配置已更新")
|
||
if reply:
|
||
return reply
|
||
session = self.sessions.session_query(query, session_id)
|
||
logger.debug("[QWEN] session query={}".format(session.messages))
|
||
|
||
reply_content = self.reply_text(session)
|
||
logger.debug(
|
||
"[QWEN] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(
|
||
session.messages,
|
||
session_id,
|
||
reply_content["content"],
|
||
reply_content["completion_tokens"],
|
||
)
|
||
)
|
||
if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0:
|
||
reply = Reply(ReplyType.ERROR, reply_content["content"])
|
||
elif reply_content["completion_tokens"] > 0:
|
||
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
|
||
reply = Reply(ReplyType.TEXT, reply_content["content"])
|
||
else:
|
||
reply = Reply(ReplyType.ERROR, reply_content["content"])
|
||
logger.debug("[QWEN] reply {} used 0 tokens.".format(reply_content))
|
||
return reply
|
||
|
||
else:
|
||
reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type))
|
||
return reply
|
||
|
||
def reply_text(self, session: AliQwenSession, retry_count=0) -> dict:
|
||
"""
|
||
call bailian's ChatCompletion to get the answer
|
||
:param session: a conversation session
|
||
:param retry_count: retry count
|
||
:return: {}
|
||
"""
|
||
try:
|
||
prompt, history = self.convert_messages_format(session.messages)
|
||
self.update_api_key_if_expired()
|
||
# NOTE 阿里百炼的call()函数未提供temperature参数,考虑到temperature和top_p参数作用相同,取两者较小的值作为top_p参数传入,详情见文档 https://help.aliyun.com/document_detail/2587502.htm
|
||
response = broadscope_bailian.Completions().call(app_id=self.app_id(), prompt=prompt, history=history, top_p=min(self.temperature(), self.top_p()))
|
||
completion_content = self.get_completion_content(response, self.node_id())
|
||
completion_tokens, total_tokens = self.calc_tokens(session.messages, completion_content)
|
||
return {
|
||
"total_tokens": total_tokens,
|
||
"completion_tokens": completion_tokens,
|
||
"content": completion_content,
|
||
}
|
||
except Exception as e:
|
||
need_retry = retry_count < 2
|
||
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
|
||
if isinstance(e, openai.error.RateLimitError):
|
||
logger.warn("[QWEN] RateLimitError: {}".format(e))
|
||
result["content"] = "提问太快啦,请休息一下再问我吧"
|
||
if need_retry:
|
||
time.sleep(20)
|
||
elif isinstance(e, openai.error.Timeout):
|
||
logger.warn("[QWEN] Timeout: {}".format(e))
|
||
result["content"] = "我没有收到你的消息"
|
||
if need_retry:
|
||
time.sleep(5)
|
||
elif isinstance(e, openai.error.APIError):
|
||
logger.warn("[QWEN] Bad Gateway: {}".format(e))
|
||
result["content"] = "请再问我一次"
|
||
if need_retry:
|
||
time.sleep(10)
|
||
elif isinstance(e, openai.error.APIConnectionError):
|
||
logger.warn("[QWEN] APIConnectionError: {}".format(e))
|
||
need_retry = False
|
||
result["content"] = "我连接不到你的网络"
|
||
else:
|
||
logger.exception("[QWEN] Exception: {}".format(e))
|
||
need_retry = False
|
||
self.sessions.clear_session(session.session_id)
|
||
|
||
if need_retry:
|
||
logger.warn("[QWEN] 第{}次重试".format(retry_count + 1))
|
||
return self.reply_text(session, retry_count + 1)
|
||
else:
|
||
return result
|
||
|
||
def set_api_key(self):
|
||
api_key, expired_time = self.api_key_client().create_token(agent_key=self.agent_key())
|
||
broadscope_bailian.api_key = api_key
|
||
return expired_time
|
||
|
||
def update_api_key_if_expired(self):
|
||
if time.time() > self.api_key_expired_time:
|
||
self.api_key_expired_time = self.set_api_key()
|
||
|
||
def convert_messages_format(self, messages) -> Tuple[str, List[ChatQaMessage]]:
|
||
history = []
|
||
user_content = ''
|
||
assistant_content = ''
|
||
system_content = ''
|
||
for message in messages:
|
||
role = message.get('role')
|
||
if role == 'user':
|
||
user_content += message.get('content')
|
||
elif role == 'assistant':
|
||
assistant_content = message.get('content')
|
||
history.append(ChatQaMessage(user_content, assistant_content))
|
||
user_content = ''
|
||
assistant_content = ''
|
||
elif role =='system':
|
||
system_content += message.get('content')
|
||
if user_content == '':
|
||
raise Exception('no user message')
|
||
if system_content != '':
|
||
# NOTE 模拟系统消息,测试发现人格描述以"你需要扮演ChatGPT"开头能够起作用,而以"你是ChatGPT"开头模型会直接否认
|
||
system_qa = ChatQaMessage(system_content, '好的,我会严格按照你的设定回答问题')
|
||
history.insert(0, system_qa)
|
||
logger.debug("[QWEN] converted qa messages: {}".format([item.to_dict() for item in history]))
|
||
logger.debug("[QWEN] user content as prompt: {}".format(user_content))
|
||
return user_content, history
|
||
|
||
def get_completion_content(self, response, node_id):
|
||
if not response['Success']:
|
||
return f"[ERROR]\n{response['Code']}:{response['Message']}"
|
||
text = response['Data']['Text']
|
||
if node_id == '':
|
||
return text
|
||
# TODO: 当使用流程编排创建大模型应用时,响应结构如下,最终结果在['finalResult'][node_id]['response']['text']中,暂时先这么写
|
||
# {
|
||
# 'Success': True,
|
||
# 'Code': None,
|
||
# 'Message': None,
|
||
# 'Data': {
|
||
# 'ResponseId': '9822f38dbacf4c9b8daf5ca03a2daf15',
|
||
# 'SessionId': 'session_id',
|
||
# 'Text': '{"finalResult":{"LLM_T7islK":{"params":{"modelId":"qwen-plus-v1","prompt":"${systemVars.query}${bizVars.Text}"},"response":{"text":"作为一个AI语言模型,我没有年龄,因为我没有生日。\n我只是一个程序,没有生命和身体。"}}}}',
|
||
# 'Thoughts': [],
|
||
# 'Debug': {},
|
||
# 'DocReferences': []
|
||
# },
|
||
# 'RequestId': '8e11d31551ce4c3f83f49e6e0dd998b0',
|
||
# 'Failed': None
|
||
# }
|
||
text_dict = json.loads(text)
|
||
completion_content = text_dict['finalResult'][node_id]['response']['text']
|
||
return completion_content
|
||
|
||
def calc_tokens(self, messages, completion_content):
|
||
completion_tokens = len(completion_content)
|
||
prompt_tokens = 0
|
||
for message in messages:
|
||
prompt_tokens += len(message["content"])
|
||
return completion_tokens, prompt_tokens + completion_tokens
|