mirror of
https://github.com/zhayujie/chatgpt-on-wechat.git
synced 2026-02-19 00:37:23 +08:00
171 lines
5.7 KiB
Python
171 lines
5.7 KiB
Python
# encoding:utf-8
|
||
|
||
from bot.bot import Bot
|
||
from config import conf
|
||
from common.log import logger
|
||
import openai
|
||
|
||
user_session = dict()
|
||
|
||
# OpenAI对话模型API (可用)
|
||
class OpenAIBot(Bot):
|
||
def __init__(self):
|
||
openai.api_key = conf().get('open_ai_api_key')
|
||
|
||
def reply(self, query, context=None):
|
||
|
||
# acquire reply content
|
||
if not context or not context.get('type') or context.get('type') == 'TEXT':
|
||
logger.info("[OPEN_AI] query={}".format(query))
|
||
from_user_id = context['from_user_id']
|
||
if query == '#清除记忆':
|
||
Session.clear_session(from_user_id)
|
||
return '记忆已清除'
|
||
|
||
new_query = Session.build_session_query(query, from_user_id)
|
||
logger.debug("[OPEN_AI] session query={}".format(new_query))
|
||
|
||
reply_content = self.reply_text(new_query, query)
|
||
Session.save_session(query, reply_content, from_user_id)
|
||
return reply_content
|
||
|
||
elif context.get('type', None) == 'IMAGE_CREATE':
|
||
return self.create_img(query)
|
||
|
||
def reply_text(self, query, origin_query):
|
||
try:
|
||
response = openai.Completion.create(
|
||
model="text-davinci-003", # 对话模型的名称
|
||
prompt=query,
|
||
temperature=0.9, # 值在[0,1]之间,越大表示回复越具有不确定性
|
||
max_tokens=1200, # 回复最大的字符数
|
||
top_p=1,
|
||
frequency_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
|
||
presence_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
|
||
stop=["#"]
|
||
)
|
||
res_content = response.choices[0]["text"].strip().rstrip("<|im_end|>")
|
||
except Exception as e:
|
||
logger.exception(e)
|
||
return None
|
||
logger.info("[OPEN_AI] reply={}".format(res_content))
|
||
return res_content
|
||
|
||
def create_img(self, query):
|
||
try:
|
||
logger.info("[OPEN_AI] image_query={}".format(query))
|
||
response = openai.Image.create(
|
||
prompt=query, #图片描述
|
||
n=1, #每次生成图片的数量
|
||
size="256x256" #图片大小,可选有 256x256, 512x512, 1024x1024
|
||
)
|
||
image_url = response['data'][0]['url']
|
||
logger.info("[OPEN_AI] image_url={}".format(image_url))
|
||
except Exception as e:
|
||
logger.exception(e)
|
||
return None
|
||
return image_url
|
||
|
||
def edit_img(self, query, src_img):
|
||
try:
|
||
response = openai.Image.create_edit(
|
||
image=open(src_img, 'rb'),
|
||
mask=open('cat-mask.png', 'rb'),
|
||
prompt=query,
|
||
n=1,
|
||
size='512x512'
|
||
)
|
||
image_url = response['data'][0]['url']
|
||
logger.info("[OPEN_AI] image_url={}".format(image_url))
|
||
except Exception as e:
|
||
logger.exception(e)
|
||
return None
|
||
return image_url
|
||
|
||
def migration_img(self, query, src_img):
|
||
|
||
try:
|
||
response = openai.Image.create_variation(
|
||
image=open(src_img, 'rb'),
|
||
n=1,
|
||
size="512x512"
|
||
)
|
||
image_url = response['data'][0]['url']
|
||
logger.info("[OPEN_AI] image_url={}".format(image_url))
|
||
except Exception as e:
|
||
logger.exception(e)
|
||
return None
|
||
return image_url
|
||
|
||
def append_question_mark(self, query):
|
||
end_symbols = [".", "。", "?", "?", "!", "!"]
|
||
for symbol in end_symbols:
|
||
if query.endswith(symbol):
|
||
return query
|
||
return query + "?"
|
||
|
||
|
||
class Session(object):
|
||
@staticmethod
|
||
def build_session_query(query, user_id):
|
||
'''
|
||
build query with conversation history
|
||
e.g. Q: xxx
|
||
A: xxx
|
||
Q: xxx
|
||
:param query: query content
|
||
:param user_id: from user id
|
||
:return: query content with conversaction
|
||
'''
|
||
new_query = ""
|
||
session = user_session.get(user_id, None)
|
||
if session:
|
||
for conversation in session:
|
||
new_query += "Q: " + conversation["question"] + "\n\n\nA: " + conversation["answer"] + "<|im_end|>\n"
|
||
new_query += "Q: " + query + "\nA: "
|
||
return new_query
|
||
else:
|
||
return "Q: " + query + "\nA: "
|
||
|
||
@staticmethod
|
||
def save_session(query, answer, user_id):
|
||
max_tokens = conf().get("conversation_max_tokens")
|
||
if not max_tokens:
|
||
# default 3000
|
||
max_tokens = 3000
|
||
conversation = dict()
|
||
conversation["question"] = query
|
||
conversation["answer"] = answer
|
||
session = user_session.get(user_id)
|
||
if session:
|
||
# append conversation
|
||
session.append(conversation)
|
||
else:
|
||
# create session
|
||
queue = list()
|
||
queue.append(conversation)
|
||
user_session[user_id] = queue
|
||
|
||
# discard exceed limit conversation
|
||
Session.discard_exceed_conversation(user_session[user_id], max_tokens)
|
||
|
||
|
||
@staticmethod
|
||
def discard_exceed_conversation(session, max_tokens):
|
||
count = 0
|
||
count_list = list()
|
||
for i in range(len(session)-1, -1, -1):
|
||
# count tokens of conversation list
|
||
history_conv = session[i]
|
||
count += len(history_conv["question"]) + len(history_conv["answer"])
|
||
count_list.append(count)
|
||
|
||
for c in count_list:
|
||
if c > max_tokens:
|
||
# pop first conversation
|
||
session.pop(0)
|
||
|
||
@staticmethod
|
||
def clear_session(user_id):
|
||
user_session[user_id] = []
|