Files
chatgpt-on-wechat/models/dashscope/dashscope_bot.py
2026-02-03 00:43:42 +08:00

529 lines
22 KiB
Python

# encoding:utf-8
import json
from models.bot import Bot
from models.session_manager import SessionManager
from bridge.context import ContextType
from bridge.reply import Reply, ReplyType
from common.log import logger
from config import conf, load_config
from .dashscope_session import DashscopeSession
import os
import dashscope
from http import HTTPStatus
dashscope_models = {
"qwen-turbo": dashscope.Generation.Models.qwen_turbo,
"qwen-plus": dashscope.Generation.Models.qwen_plus,
"qwen-max": dashscope.Generation.Models.qwen_max,
"qwen-bailian-v1": dashscope.Generation.Models.bailian_v1,
# Qwen3 series models - use string directly as model name
"qwen3-max": "qwen3-max",
"qwen3-plus": "qwen3-plus",
"qwen3-turbo": "qwen3-turbo",
# Other new models
"qwen-long": "qwen-long",
"qwq-32b-preview": "qwq-32b-preview",
"qvq-72b-preview": "qvq-72b-preview"
}
# ZhipuAI对话模型API
class DashscopeBot(Bot):
def __init__(self):
super().__init__()
self.sessions = SessionManager(DashscopeSession, model=conf().get("model") or "qwen-plus")
self.model_name = conf().get("model") or "qwen-plus"
self.api_key = conf().get("dashscope_api_key")
if self.api_key:
os.environ["DASHSCOPE_API_KEY"] = self.api_key
self.client = dashscope.Generation
def reply(self, query, context=None):
# acquire reply content
if context.type == ContextType.TEXT:
logger.info("[DASHSCOPE] query={}".format(query))
session_id = context["session_id"]
reply = None
clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"])
if query in clear_memory_commands:
self.sessions.clear_session(session_id)
reply = Reply(ReplyType.INFO, "记忆已清除")
elif query == "#清除所有":
self.sessions.clear_all_session()
reply = Reply(ReplyType.INFO, "所有人记忆已清除")
elif query == "#更新配置":
load_config()
reply = Reply(ReplyType.INFO, "配置已更新")
if reply:
return reply
session = self.sessions.session_query(query, session_id)
logger.debug("[DASHSCOPE] session query={}".format(session.messages))
reply_content = self.reply_text(session)
logger.debug(
"[DASHSCOPE] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(
session.messages,
session_id,
reply_content["content"],
reply_content["completion_tokens"],
)
)
if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0:
reply = Reply(ReplyType.ERROR, reply_content["content"])
elif reply_content["completion_tokens"] > 0:
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
reply = Reply(ReplyType.TEXT, reply_content["content"])
else:
reply = Reply(ReplyType.ERROR, reply_content["content"])
logger.debug("[DASHSCOPE] reply {} used 0 tokens.".format(reply_content))
return reply
else:
reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type))
return reply
def reply_text(self, session: DashscopeSession, retry_count=0) -> dict:
"""
call openai's ChatCompletion to get the answer
:param session: a conversation session
:param session_id: session id
:param retry_count: retry count
:return: {}
"""
try:
dashscope.api_key = self.api_key
response = self.client.call(
dashscope_models[self.model_name],
messages=session.messages,
result_format="message"
)
if response.status_code == HTTPStatus.OK:
content = response.output.choices[0]["message"]["content"]
return {
"total_tokens": response.usage["total_tokens"],
"completion_tokens": response.usage["output_tokens"],
"content": content,
}
else:
logger.error('Request id: %s, Status code: %s, error code: %s, error message: %s' % (
response.request_id, response.status_code,
response.code, response.message
))
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
need_retry = retry_count < 2
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
if need_retry:
return self.reply_text(session, retry_count + 1)
else:
return result
except Exception as e:
logger.exception(e)
need_retry = retry_count < 2
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
if need_retry:
return self.reply_text(session, retry_count + 1)
else:
return result
def call_with_tools(self, messages, tools=None, stream=False, **kwargs):
"""
Call DashScope API with tool support for agent integration
This method handles:
1. Format conversion (Claude format → DashScope format)
2. System prompt injection
3. API calling with DashScope SDK
4. Thinking mode support (enable_thinking for Qwen3)
Args:
messages: List of messages (may be in Claude format from agent)
tools: List of tool definitions (may be in Claude format from agent)
stream: Whether to use streaming
**kwargs: Additional parameters (max_tokens, temperature, system, etc.)
Returns:
Formatted response or generator for streaming
"""
try:
# Convert messages from Claude format to DashScope format
messages = self._convert_messages_to_dashscope_format(messages)
# Convert tools from Claude format to DashScope format
if tools:
tools = self._convert_tools_to_dashscope_format(tools)
# Handle system prompt
system_prompt = kwargs.get('system')
if system_prompt:
# Add system message at the beginning if not already present
if not messages or messages[0].get('role') != 'system':
messages = [{"role": "system", "content": system_prompt}] + messages
else:
# Replace existing system message
messages[0] = {"role": "system", "content": system_prompt}
# Build request parameters
model_name = kwargs.get("model", self.model_name)
parameters = {
"result_format": "message", # Required for tool calling
"temperature": kwargs.get("temperature", conf().get("temperature", 0.85)),
"top_p": kwargs.get("top_p", conf().get("top_p", 0.8)),
}
# Add max_tokens if specified
if kwargs.get("max_tokens"):
parameters["max_tokens"] = kwargs["max_tokens"]
# Add tools if provided
if tools:
parameters["tools"] = tools
# Add tool_choice if specified
if kwargs.get("tool_choice"):
parameters["tool_choice"] = kwargs["tool_choice"]
# Add thinking parameters for Qwen3 models (disabled by default for stability)
if "qwen3" in model_name.lower() or "qwq" in model_name.lower():
# Only enable thinking mode if explicitly requested
enable_thinking = kwargs.get("enable_thinking", False)
if enable_thinking:
parameters["enable_thinking"] = True
# Set thinking budget if specified
if kwargs.get("thinking_budget"):
parameters["thinking_budget"] = kwargs["thinking_budget"]
# Qwen3 requires incremental_output=true in thinking mode
if stream:
parameters["incremental_output"] = True
# Always use incremental_output for streaming (for better token-by-token streaming)
# This is especially important for tool calling to avoid incomplete responses
if stream:
parameters["incremental_output"] = True
# Make API call with DashScope SDK
if stream:
return self._handle_stream_response(model_name, messages, parameters)
else:
return self._handle_sync_response(model_name, messages, parameters)
except Exception as e:
error_msg = str(e)
logger.error(f"[DASHSCOPE] call_with_tools error: {error_msg}")
if stream:
def error_generator():
yield {
"error": True,
"message": error_msg,
"status_code": 500
}
return error_generator()
else:
return {
"error": True,
"message": error_msg,
"status_code": 500
}
def _handle_sync_response(self, model_name, messages, parameters):
"""Handle synchronous DashScope API response"""
try:
# Set API key before calling
dashscope.api_key = self.api_key
response = dashscope.Generation.call(
model=dashscope_models.get(model_name, model_name),
messages=messages,
**parameters
)
if response.status_code == HTTPStatus.OK:
# Convert DashScope response to OpenAI-compatible format
choice = response.output.choices[0]
return {
"id": response.request_id,
"object": "chat.completion",
"created": 0,
"model": model_name,
"choices": [{
"index": 0,
"message": {
"role": choice.message.role,
"content": choice.message.content,
"tool_calls": self._convert_tool_calls_to_openai_format(
choice.message.get("tool_calls")
)
},
"finish_reason": choice.finish_reason
}],
"usage": {
"prompt_tokens": response.usage.input_tokens,
"completion_tokens": response.usage.output_tokens,
"total_tokens": response.usage.total_tokens
}
}
else:
logger.error(f"[DASHSCOPE] API error: {response.code} - {response.message}")
return {
"error": True,
"message": response.message,
"status_code": response.status_code
}
except Exception as e:
logger.error(f"[DASHSCOPE] sync response error: {e}")
return {
"error": True,
"message": str(e),
"status_code": 500
}
def _handle_stream_response(self, model_name, messages, parameters):
"""Handle streaming DashScope API response"""
try:
# Set API key before calling
dashscope.api_key = self.api_key
responses = dashscope.Generation.call(
model=dashscope_models.get(model_name, model_name),
messages=messages,
stream=True,
**parameters
)
# Stream chunks to caller, converting to OpenAI format
for response in responses:
if response.status_code != HTTPStatus.OK:
logger.error(f"[DASHSCOPE] Stream error: {response.code} - {response.message}")
yield {
"error": True,
"message": response.message,
"status_code": response.status_code
}
continue
# Get choice - use try-except because DashScope raises KeyError on hasattr()
try:
if isinstance(response.output, dict):
choice = response.output['choices'][0]
else:
choice = response.output.choices[0]
except (KeyError, AttributeError, IndexError) as e:
logger.warning(f"[DASHSCOPE] Cannot get choice: {e}")
continue
# Get finish_reason safely
finish_reason = None
try:
if isinstance(choice, dict):
finish_reason = choice.get('finish_reason')
else:
finish_reason = choice.finish_reason
except (KeyError, AttributeError):
pass
# Convert to OpenAI-compatible format
openai_chunk = {
"id": response.request_id,
"object": "chat.completion.chunk",
"created": 0,
"model": model_name,
"choices": [{
"index": 0,
"delta": {},
"finish_reason": finish_reason
}]
}
# Get message safely - use try-except
message = {}
try:
if isinstance(choice, dict):
message = choice.get('message', {})
else:
message = choice.message
except (KeyError, AttributeError):
pass
# Add role if present
role = None
try:
if isinstance(message, dict):
role = message.get('role')
else:
role = message.role
except (KeyError, AttributeError):
pass
if role:
openai_chunk["choices"][0]["delta"]["role"] = role
# Add content if present
content = None
try:
if isinstance(message, dict):
content = message.get('content')
else:
content = message.content
except (KeyError, AttributeError):
pass
if content:
openai_chunk["choices"][0]["delta"]["content"] = content
# Add tool_calls if present
# DashScope's response object raises KeyError on hasattr() if attr doesn't exist
# So we use try-except instead
tool_calls = None
try:
if isinstance(message, dict):
tool_calls = message.get('tool_calls')
else:
tool_calls = message.tool_calls
except (KeyError, AttributeError):
pass
if tool_calls:
openai_chunk["choices"][0]["delta"]["tool_calls"] = self._convert_tool_calls_to_openai_format(tool_calls)
yield openai_chunk
except Exception as e:
logger.error(f"[DASHSCOPE] stream response error: {e}")
yield {
"error": True,
"message": str(e),
"status_code": 500
}
def _convert_tools_to_dashscope_format(self, tools):
"""
Convert tools from Claude format to DashScope format
Claude format: {name, description, input_schema}
DashScope format: {type: "function", function: {name, description, parameters}}
"""
if not tools:
return None
dashscope_tools = []
for tool in tools:
# Check if already in DashScope/OpenAI format
if 'type' in tool and tool['type'] == 'function':
dashscope_tools.append(tool)
else:
# Convert from Claude format
dashscope_tools.append({
"type": "function",
"function": {
"name": tool.get("name"),
"description": tool.get("description"),
"parameters": tool.get("input_schema", {})
}
})
return dashscope_tools
def _convert_messages_to_dashscope_format(self, messages):
"""
Convert messages from Claude format to DashScope format
Claude uses content blocks with types like 'tool_use', 'tool_result'
DashScope uses 'tool_calls' in assistant messages and 'tool' role for results
"""
if not messages:
return []
dashscope_messages = []
for msg in messages:
role = msg.get("role")
content = msg.get("content")
# Handle string content (already in correct format)
if isinstance(content, str):
dashscope_messages.append(msg)
continue
# Handle list content (Claude format with content blocks)
if isinstance(content, list):
# Check if this is a tool result message (user role with tool_result blocks)
if role == "user" and any(block.get("type") == "tool_result" for block in content):
# Convert each tool_result block to a separate tool message
for block in content:
if block.get("type") == "tool_result":
dashscope_messages.append({
"role": "tool",
"content": block.get("content", ""),
"tool_call_id": block.get("tool_use_id") # DashScope uses 'tool_call_id'
})
# Check if this is an assistant message with tool_use blocks
elif role == "assistant":
# Separate text content and tool_use blocks
text_parts = []
tool_calls = []
for block in content:
if block.get("type") == "text":
text_parts.append(block.get("text", ""))
elif block.get("type") == "tool_use":
tool_calls.append({
"id": block.get("id"),
"type": "function",
"function": {
"name": block.get("name"),
"arguments": json.dumps(block.get("input", {}))
}
})
# Build DashScope format assistant message
dashscope_msg = {
"role": "assistant"
}
# Add content only if there is actual text
# DashScope API: when tool_calls exist, content should be None or omitted if empty
if text_parts:
dashscope_msg["content"] = " ".join(text_parts)
elif not tool_calls:
# If no tool_calls and no text, set empty string (rare case)
dashscope_msg["content"] = ""
# If there are tool_calls but no text, don't set content field at all
if tool_calls:
dashscope_msg["tool_calls"] = tool_calls
dashscope_messages.append(dashscope_msg)
else:
# Other list content, keep as is
dashscope_messages.append(msg)
else:
# Other formats, keep as is
dashscope_messages.append(msg)
return dashscope_messages
def _convert_tool_calls_to_openai_format(self, tool_calls):
"""Convert DashScope tool_calls to OpenAI format"""
if not tool_calls:
return None
openai_tool_calls = []
for tool_call in tool_calls:
# DashScope format is already similar to OpenAI
if isinstance(tool_call, dict):
openai_tool_calls.append(tool_call)
else:
# Handle object format
openai_tool_calls.append({
"id": getattr(tool_call, 'id', None),
"type": "function",
"function": {
"name": tool_call.function.name,
"arguments": tool_call.function.arguments
}
})
return openai_tool_calls