mirror of
https://github.com/zhayujie/chatgpt-on-wechat.git
synced 2026-02-08 01:02:22 +08:00
497 lines
20 KiB
Python
497 lines
20 KiB
Python
# encoding:utf-8
|
|
|
|
import json
|
|
import time
|
|
|
|
import requests
|
|
|
|
from models.baidu.baidu_wenxin_session import BaiduWenxinSession
|
|
from models.bot import Bot
|
|
from models.session_manager import SessionManager
|
|
from bridge.context import ContextType
|
|
from bridge.reply import Reply, ReplyType
|
|
from common import const
|
|
from common.log import logger
|
|
from config import conf
|
|
|
|
# Optional OpenAI image support
|
|
try:
|
|
from models.openai.open_ai_image import OpenAIImage
|
|
_openai_image_available = True
|
|
except Exception as e:
|
|
logger.warning(f"OpenAI image support not available: {e}")
|
|
_openai_image_available = False
|
|
OpenAIImage = object # Fallback to object
|
|
|
|
user_session = dict()
|
|
|
|
|
|
# OpenAI对话模型API (可用)
|
|
class ClaudeAPIBot(Bot, OpenAIImage):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.api_key = conf().get("claude_api_key")
|
|
self.api_base = conf().get("claude_api_base") or "https://api.anthropic.com/v1"
|
|
self.proxy = conf().get("proxy", None)
|
|
self.sessions = SessionManager(BaiduWenxinSession, model=conf().get("model") or "text-davinci-003")
|
|
|
|
def reply(self, query, context=None):
|
|
# acquire reply content
|
|
if context and context.type:
|
|
if context.type == ContextType.TEXT:
|
|
logger.info("[CLAUDE_API] query={}".format(query))
|
|
session_id = context["session_id"]
|
|
reply = None
|
|
if query == "#清除记忆":
|
|
self.sessions.clear_session(session_id)
|
|
reply = Reply(ReplyType.INFO, "记忆已清除")
|
|
elif query == "#清除所有":
|
|
self.sessions.clear_all_session()
|
|
reply = Reply(ReplyType.INFO, "所有人记忆已清除")
|
|
else:
|
|
session = self.sessions.session_query(query, session_id)
|
|
result = self.reply_text(session)
|
|
logger.info(result)
|
|
total_tokens, completion_tokens, reply_content = (
|
|
result["total_tokens"],
|
|
result["completion_tokens"],
|
|
result["content"],
|
|
)
|
|
logger.debug(
|
|
"[CLAUDE_API] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(str(session), session_id, reply_content, completion_tokens)
|
|
)
|
|
|
|
if total_tokens == 0:
|
|
reply = Reply(ReplyType.ERROR, reply_content)
|
|
else:
|
|
self.sessions.session_reply(reply_content, session_id, total_tokens)
|
|
reply = Reply(ReplyType.TEXT, reply_content)
|
|
return reply
|
|
elif context.type == ContextType.IMAGE_CREATE:
|
|
ok, retstring = self.create_img(query, 0)
|
|
reply = None
|
|
if ok:
|
|
reply = Reply(ReplyType.IMAGE_URL, retstring)
|
|
else:
|
|
reply = Reply(ReplyType.ERROR, retstring)
|
|
return reply
|
|
|
|
def reply_text(self, session: BaiduWenxinSession, retry_count=0, tools=None):
|
|
try:
|
|
actual_model = self._model_mapping(conf().get("model"))
|
|
|
|
# Prepare headers
|
|
headers = {
|
|
"x-api-key": self.api_key,
|
|
"anthropic-version": "2023-06-01",
|
|
"content-type": "application/json"
|
|
}
|
|
|
|
# Extract system prompt if present and prepare Claude-compatible messages
|
|
system_prompt = conf().get("character_desc", "")
|
|
claude_messages = []
|
|
|
|
for msg in session.messages:
|
|
if msg.get("role") == "system":
|
|
system_prompt = msg["content"]
|
|
else:
|
|
claude_messages.append(msg)
|
|
|
|
# Prepare request data
|
|
data = {
|
|
"model": actual_model,
|
|
"messages": claude_messages,
|
|
"max_tokens": self._get_max_tokens(actual_model)
|
|
}
|
|
|
|
if system_prompt:
|
|
data["system"] = system_prompt
|
|
|
|
if tools:
|
|
data["tools"] = tools
|
|
|
|
# Make HTTP request
|
|
proxies = {"http": self.proxy, "https": self.proxy} if self.proxy else None
|
|
response = requests.post(
|
|
f"{self.api_base}/messages",
|
|
headers=headers,
|
|
json=data,
|
|
proxies=proxies
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
raise Exception(f"API request failed: {response.status_code} - {response.text}")
|
|
|
|
claude_response = response.json()
|
|
# Handle response content and tool calls
|
|
res_content = ""
|
|
tool_calls = []
|
|
|
|
content_blocks = claude_response.get("content", [])
|
|
for block in content_blocks:
|
|
if block.get("type") == "text":
|
|
res_content += block.get("text", "")
|
|
elif block.get("type") == "tool_use":
|
|
tool_calls.append({
|
|
"id": block.get("id", ""),
|
|
"name": block.get("name", ""),
|
|
"arguments": block.get("input", {})
|
|
})
|
|
|
|
res_content = res_content.strip().replace("<|endoftext|>", "")
|
|
usage = claude_response.get("usage", {})
|
|
total_tokens = usage.get("input_tokens", 0) + usage.get("output_tokens", 0)
|
|
completion_tokens = usage.get("output_tokens", 0)
|
|
|
|
logger.info("[CLAUDE_API] reply={}".format(res_content))
|
|
if tool_calls:
|
|
logger.info("[CLAUDE_API] tool_calls={}".format(tool_calls))
|
|
|
|
result = {
|
|
"total_tokens": total_tokens,
|
|
"completion_tokens": completion_tokens,
|
|
"content": res_content,
|
|
}
|
|
|
|
if tool_calls:
|
|
result["tool_calls"] = tool_calls
|
|
|
|
return result
|
|
except Exception as e:
|
|
need_retry = retry_count < 2
|
|
result = {"total_tokens": 0, "completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
|
|
|
|
# Handle different types of errors
|
|
error_str = str(e).lower()
|
|
if "rate" in error_str or "limit" in error_str:
|
|
logger.warn("[CLAUDE_API] RateLimitError: {}".format(e))
|
|
result["content"] = "提问太快啦,请休息一下再问我吧"
|
|
if need_retry:
|
|
time.sleep(20)
|
|
elif "timeout" in error_str:
|
|
logger.warn("[CLAUDE_API] Timeout: {}".format(e))
|
|
result["content"] = "我没有收到你的消息"
|
|
if need_retry:
|
|
time.sleep(5)
|
|
elif "connection" in error_str or "network" in error_str:
|
|
logger.warn("[CLAUDE_API] APIConnectionError: {}".format(e))
|
|
need_retry = False
|
|
result["content"] = "我连接不到你的网络"
|
|
else:
|
|
logger.warn("[CLAUDE_API] Exception: {}".format(e))
|
|
need_retry = False
|
|
self.sessions.clear_session(session.session_id)
|
|
|
|
if need_retry:
|
|
logger.warn("[CLAUDE_API] 第{}次重试".format(retry_count + 1))
|
|
return self.reply_text(session, retry_count + 1, tools)
|
|
else:
|
|
return result
|
|
|
|
def _model_mapping(self, model) -> str:
|
|
if model == "claude-3-opus":
|
|
return const.CLAUDE_3_OPUS
|
|
elif model == "claude-3-sonnet":
|
|
return const.CLAUDE_3_SONNET
|
|
elif model == "claude-3-haiku":
|
|
return const.CLAUDE_3_HAIKU
|
|
elif model == "claude-3.5-sonnet":
|
|
return const.CLAUDE_35_SONNET
|
|
return model
|
|
|
|
def _get_max_tokens(self, model: str) -> int:
|
|
"""
|
|
Get max_tokens for the model.
|
|
Reference from pi-mono:
|
|
- Claude 3.5/3.7: 8192
|
|
- Claude 3 Opus: 4096
|
|
- Default: 8192
|
|
"""
|
|
if model and (model.startswith("claude-3-5") or model.startswith("claude-3-7")):
|
|
return 8192
|
|
elif model and model.startswith("claude-3") and "opus" in model:
|
|
return 4096
|
|
elif model and (model.startswith("claude-sonnet-4") or model.startswith("claude-opus-4")):
|
|
return 64000
|
|
return 8192
|
|
|
|
def call_with_tools(self, messages, tools=None, stream=False, **kwargs):
|
|
"""
|
|
Call Claude API with tool support for agent integration
|
|
|
|
Args:
|
|
messages: List of messages
|
|
tools: List of tool definitions
|
|
stream: Whether to use streaming
|
|
**kwargs: Additional parameters
|
|
|
|
Returns:
|
|
Formatted response compatible with OpenAI format or generator for streaming
|
|
"""
|
|
actual_model = self._model_mapping(conf().get("model"))
|
|
|
|
# Extract system prompt from messages if present
|
|
system_prompt = kwargs.get("system", conf().get("character_desc", ""))
|
|
claude_messages = []
|
|
|
|
for msg in messages:
|
|
if msg.get("role") == "system":
|
|
system_prompt = msg["content"]
|
|
else:
|
|
claude_messages.append(msg)
|
|
|
|
request_params = {
|
|
"model": actual_model,
|
|
"max_tokens": kwargs.get("max_tokens", self._get_max_tokens(actual_model)),
|
|
"messages": claude_messages,
|
|
"stream": stream
|
|
}
|
|
|
|
if system_prompt:
|
|
request_params["system"] = system_prompt
|
|
|
|
if tools:
|
|
request_params["tools"] = tools
|
|
|
|
try:
|
|
if stream:
|
|
return self._handle_stream_response(request_params)
|
|
else:
|
|
return self._handle_sync_response(request_params)
|
|
except Exception as e:
|
|
logger.error(f"Claude API call error: {e}")
|
|
if stream:
|
|
# Return error generator for stream
|
|
def error_generator():
|
|
yield {
|
|
"error": True,
|
|
"message": str(e),
|
|
"status_code": 500
|
|
}
|
|
|
|
return error_generator()
|
|
else:
|
|
# Return error response for sync
|
|
return {
|
|
"error": True,
|
|
"message": str(e),
|
|
"status_code": 500
|
|
}
|
|
|
|
def _handle_sync_response(self, request_params):
|
|
"""Handle synchronous Claude API response"""
|
|
# Prepare headers
|
|
headers = {
|
|
"x-api-key": self.api_key,
|
|
"anthropic-version": "2023-06-01",
|
|
"content-type": "application/json"
|
|
}
|
|
|
|
# Make HTTP request
|
|
proxies = {"http": self.proxy, "https": self.proxy} if self.proxy else None
|
|
response = requests.post(
|
|
f"{self.api_base}/messages",
|
|
headers=headers,
|
|
json=request_params,
|
|
proxies=proxies
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
raise Exception(f"API request failed: {response.status_code} - {response.text}")
|
|
|
|
claude_response = response.json()
|
|
|
|
# Extract content blocks
|
|
text_content = ""
|
|
tool_calls = []
|
|
|
|
content_blocks = claude_response.get("content", [])
|
|
for block in content_blocks:
|
|
if block.get("type") == "text":
|
|
text_content += block.get("text", "")
|
|
elif block.get("type") == "tool_use":
|
|
tool_calls.append({
|
|
"id": block.get("id", ""),
|
|
"type": "function",
|
|
"function": {
|
|
"name": block.get("name", ""),
|
|
"arguments": json.dumps(block.get("input", {}))
|
|
}
|
|
})
|
|
|
|
# Build message in OpenAI format
|
|
message = {
|
|
"role": "assistant",
|
|
"content": text_content
|
|
}
|
|
if tool_calls:
|
|
message["tool_calls"] = tool_calls
|
|
|
|
# Format response to match OpenAI structure
|
|
usage = claude_response.get("usage", {})
|
|
formatted_response = {
|
|
"id": claude_response.get("id", ""),
|
|
"object": "chat.completion",
|
|
"created": int(time.time()),
|
|
"model": claude_response.get("model", request_params["model"]),
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"message": message,
|
|
"finish_reason": claude_response.get("stop_reason", "stop")
|
|
}
|
|
],
|
|
"usage": {
|
|
"prompt_tokens": usage.get("input_tokens", 0),
|
|
"completion_tokens": usage.get("output_tokens", 0),
|
|
"total_tokens": usage.get("input_tokens", 0) + usage.get("output_tokens", 0)
|
|
}
|
|
}
|
|
|
|
return formatted_response
|
|
|
|
def _handle_stream_response(self, request_params):
|
|
"""Handle streaming Claude API response using HTTP requests"""
|
|
# Prepare headers
|
|
headers = {
|
|
"x-api-key": self.api_key,
|
|
"anthropic-version": "2023-06-01",
|
|
"content-type": "application/json"
|
|
}
|
|
|
|
# Add stream parameter
|
|
request_params["stream"] = True
|
|
|
|
# Track tool use state
|
|
tool_uses_map = {} # {index: {id, name, input}}
|
|
current_tool_use_index = -1
|
|
stop_reason = None # Track stop reason from Claude
|
|
|
|
try:
|
|
# Make streaming HTTP request
|
|
proxies = {"http": self.proxy, "https": self.proxy} if self.proxy else None
|
|
response = requests.post(
|
|
f"{self.api_base}/messages",
|
|
headers=headers,
|
|
json=request_params,
|
|
proxies=proxies,
|
|
stream=True
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
error_text = response.text
|
|
try:
|
|
error_data = json.loads(error_text)
|
|
error_msg = error_data.get("error", {}).get("message", error_text)
|
|
except:
|
|
error_msg = error_text or "Unknown error"
|
|
|
|
yield {
|
|
"error": True,
|
|
"status_code": response.status_code,
|
|
"message": error_msg
|
|
}
|
|
return
|
|
|
|
# Process streaming response
|
|
for line in response.iter_lines():
|
|
if line:
|
|
line = line.decode('utf-8')
|
|
if line.startswith('data: '):
|
|
line = line[6:] # Remove 'data: ' prefix
|
|
if line == '[DONE]':
|
|
break
|
|
try:
|
|
event = json.loads(line)
|
|
event_type = event.get("type")
|
|
|
|
if event_type == "content_block_start":
|
|
# New content block
|
|
block = event.get("content_block", {})
|
|
if block.get("type") == "tool_use":
|
|
current_tool_use_index = event.get("index", 0)
|
|
tool_uses_map[current_tool_use_index] = {
|
|
"id": block.get("id", ""),
|
|
"name": block.get("name", ""),
|
|
"input": ""
|
|
}
|
|
|
|
elif event_type == "content_block_delta":
|
|
delta = event.get("delta", {})
|
|
delta_type = delta.get("type")
|
|
|
|
if delta_type == "text_delta":
|
|
# Text content
|
|
content = delta.get("text", "")
|
|
yield {
|
|
"id": event.get("id", ""),
|
|
"object": "chat.completion.chunk",
|
|
"created": int(time.time()),
|
|
"model": request_params["model"],
|
|
"choices": [{
|
|
"index": 0,
|
|
"delta": {"content": content},
|
|
"finish_reason": None
|
|
}]
|
|
}
|
|
|
|
elif delta_type == "input_json_delta":
|
|
# Tool input accumulation
|
|
if current_tool_use_index >= 0:
|
|
tool_uses_map[current_tool_use_index]["input"] += delta.get("partial_json", "")
|
|
|
|
elif event_type == "message_delta":
|
|
# Extract stop_reason from delta
|
|
delta = event.get("delta", {})
|
|
if "stop_reason" in delta:
|
|
stop_reason = delta.get("stop_reason")
|
|
logger.info(f"[Claude] Stream stop_reason: {stop_reason}")
|
|
|
|
# Message complete - yield tool calls if any
|
|
if tool_uses_map:
|
|
for idx in sorted(tool_uses_map.keys()):
|
|
tool_data = tool_uses_map[idx]
|
|
yield {
|
|
"id": event.get("id", ""),
|
|
"object": "chat.completion.chunk",
|
|
"created": int(time.time()),
|
|
"model": request_params["model"],
|
|
"choices": [{
|
|
"index": 0,
|
|
"delta": {
|
|
"tool_calls": [{
|
|
"index": idx,
|
|
"id": tool_data["id"],
|
|
"type": "function",
|
|
"function": {
|
|
"name": tool_data["name"],
|
|
"arguments": tool_data["input"]
|
|
}
|
|
}]
|
|
},
|
|
"finish_reason": stop_reason
|
|
}]
|
|
}
|
|
|
|
elif event_type == "message_stop":
|
|
# Final event - log completion
|
|
logger.debug(f"[Claude] Stream completed with stop_reason: {stop_reason}")
|
|
|
|
except json.JSONDecodeError:
|
|
continue
|
|
|
|
except requests.RequestException as e:
|
|
logger.error(f"Claude streaming request error: {e}")
|
|
yield {
|
|
"error": True,
|
|
"message": f"Connection error: {str(e)}",
|
|
"status_code": 0
|
|
}
|
|
except Exception as e:
|
|
logger.error(f"Claude streaming error: {e}")
|
|
yield {
|
|
"error": True,
|
|
"message": str(e),
|
|
"status_code": 500
|
|
}
|