Files
chatgpt-on-wechat/bridge/agent_initializer.py
cowagent e4fcfa356a refactor: 改用动态函数实现运行时信息更新(更健壮的方案)
改进点:
1. builder.py: _build_runtime_section() 支持 callable 动态时间函数
2. agent_initializer.py: 传入 get_current_time 函数而非静态时间值
3. agent.py: _rebuild_runtime_section() 动态调用时间函数并重建该部分

优势:
- 解耦模板:不依赖具体的提示词格式
- 健壮性:提示词模板改变不会导致功能失效
- 向后兼容:保留对静态时间的支持
- 性能优化:只在需要时才计算时间

相比之前的正则匹配方案,这个方案更加优雅和可维护。
2026-02-04 22:37:19 +08:00

383 lines
15 KiB
Python

"""
Agent Initializer - Handles agent initialization logic
"""
import os
import asyncio
import datetime
import time
from typing import Optional, List
from agent.protocol import Agent
from agent.tools import ToolManager
from common.log import logger
class AgentInitializer:
"""
Handles agent initialization including:
- Workspace setup
- Memory system initialization
- Tool loading
- System prompt building
"""
def __init__(self, bridge, agent_bridge):
"""
Initialize agent initializer
Args:
bridge: COW bridge instance
agent_bridge: AgentBridge instance (for create_agent method)
"""
self.bridge = bridge
self.agent_bridge = agent_bridge
def initialize_agent(self, session_id: Optional[str] = None) -> Agent:
"""
Initialize agent for a session
Args:
session_id: Session ID (None for default agent)
Returns:
Initialized agent instance
"""
from config import conf
# Get workspace from config
workspace_root = os.path.expanduser(conf().get("agent_workspace", "~/cow"))
# Migrate API keys
self._migrate_config_to_env(workspace_root)
# Load environment variables
self._load_env_file()
# Initialize workspace
from agent.prompt import ensure_workspace, load_context_files, PromptBuilder
workspace_files = ensure_workspace(workspace_root, create_templates=True)
if session_id is None:
logger.info(f"[AgentInitializer] Workspace initialized at: {workspace_root}")
# Setup memory system
memory_manager, memory_tools = self._setup_memory_system(workspace_root, session_id)
# Load tools
tools = self._load_tools(workspace_root, memory_manager, memory_tools, session_id)
# Initialize scheduler if needed
self._initialize_scheduler(tools, session_id)
# Load context files
context_files = load_context_files(workspace_root)
# Initialize skill manager
skill_manager = self._initialize_skill_manager(workspace_root, session_id)
# Check if first conversation
from agent.prompt.workspace import is_first_conversation, mark_conversation_started
is_first = is_first_conversation(workspace_root)
# Build system prompt
prompt_builder = PromptBuilder(workspace_dir=workspace_root, language="zh")
runtime_info = self._get_runtime_info(workspace_root)
system_prompt = prompt_builder.build(
tools=tools,
context_files=context_files,
skill_manager=skill_manager,
memory_manager=memory_manager,
runtime_info=runtime_info,
is_first_conversation=is_first
)
if is_first:
mark_conversation_started(workspace_root)
# Get cost control parameters
from config import conf
max_steps = conf().get("agent_max_steps", 20)
max_context_tokens = conf().get("agent_max_context_tokens", 50000)
# Create agent
agent = self.agent_bridge.create_agent(
system_prompt=system_prompt,
tools=tools,
max_steps=max_steps,
output_mode="logger",
workspace_dir=workspace_root,
skill_manager=skill_manager,
enable_skills=True,
max_context_tokens=max_context_tokens,
runtime_info=runtime_info # Pass runtime_info for dynamic time updates
)
# Attach memory manager
if memory_manager:
agent.memory_manager = memory_manager
return agent
def _load_env_file(self):
"""Load environment variables from .env file"""
env_file = os.path.expanduser("~/.cow/.env")
if os.path.exists(env_file):
try:
from dotenv import load_dotenv
load_dotenv(env_file, override=True)
except ImportError:
logger.warning("[AgentInitializer] python-dotenv not installed")
except Exception as e:
logger.warning(f"[AgentInitializer] Failed to load .env file: {e}")
def _setup_memory_system(self, workspace_root: str, session_id: Optional[str] = None):
"""
Setup memory system
Returns:
(memory_manager, memory_tools) tuple
"""
memory_manager = None
memory_tools = []
try:
from agent.memory import MemoryManager, MemoryConfig, create_embedding_provider
from agent.tools import MemorySearchTool, MemoryGetTool
from config import conf
# Get OpenAI config
openai_api_key = conf().get("open_ai_api_key", "")
openai_api_base = conf().get("open_ai_api_base", "")
# Initialize embedding provider
embedding_provider = None
if openai_api_key and openai_api_key not in ["", "YOUR API KEY", "YOUR_API_KEY"]:
try:
embedding_provider = create_embedding_provider(
provider="openai",
model="text-embedding-3-small",
api_key=openai_api_key,
api_base=openai_api_base or "https://api.openai.com/v1"
)
if session_id is None:
logger.info("[AgentInitializer] OpenAI embedding initialized")
except Exception as e:
logger.warning(f"[AgentInitializer] OpenAI embedding failed: {e}")
# Create memory manager
memory_config = MemoryConfig(workspace_root=workspace_root)
memory_manager = MemoryManager(memory_config, embedding_provider=embedding_provider)
# Sync memory
self._sync_memory(memory_manager, session_id)
# Create memory tools
memory_tools = [
MemorySearchTool(memory_manager),
MemoryGetTool(memory_manager)
]
if session_id is None:
logger.info("[AgentInitializer] Memory system initialized")
except Exception as e:
logger.warning(f"[AgentInitializer] Memory system not available: {e}")
return memory_manager, memory_tools
def _sync_memory(self, memory_manager, session_id: Optional[str] = None):
"""Sync memory database"""
try:
loop = asyncio.get_event_loop()
if loop.is_closed():
raise RuntimeError("Event loop is closed")
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
if loop.is_running():
asyncio.create_task(memory_manager.sync())
else:
loop.run_until_complete(memory_manager.sync())
except Exception as e:
logger.warning(f"[AgentInitializer] Memory sync failed: {e}")
def _load_tools(self, workspace_root: str, memory_manager, memory_tools: List, session_id: Optional[str] = None):
"""Load all tools"""
tool_manager = ToolManager()
tool_manager.load_tools()
tools = []
file_config = {
"cwd": workspace_root,
"memory_manager": memory_manager
} if memory_manager else {"cwd": workspace_root}
for tool_name in tool_manager.tool_classes.keys():
try:
# Special handling for EnvConfig tool
if tool_name == "env_config":
from agent.tools import EnvConfig
tool = EnvConfig({"agent_bridge": self.agent_bridge})
else:
tool = tool_manager.create_tool(tool_name)
if tool:
# Apply workspace config to file operation tools
if tool_name in ['read', 'write', 'edit', 'bash', 'grep', 'find', 'ls']:
tool.config = file_config
tool.cwd = file_config.get("cwd", getattr(tool, 'cwd', None))
if 'memory_manager' in file_config:
tool.memory_manager = file_config['memory_manager']
tools.append(tool)
except Exception as e:
logger.warning(f"[AgentInitializer] Failed to load tool {tool_name}: {e}")
# Add memory tools
if memory_tools:
tools.extend(memory_tools)
if session_id is None:
logger.info(f"[AgentInitializer] Added {len(memory_tools)} memory tools")
if session_id is None:
logger.info(f"[AgentInitializer] Loaded {len(tools)} tools: {[t.name for t in tools]}")
return tools
def _initialize_scheduler(self, tools: List, session_id: Optional[str] = None):
"""Initialize scheduler service if needed"""
if not self.agent_bridge.scheduler_initialized:
try:
from agent.tools.scheduler.integration import init_scheduler
if init_scheduler(self.agent_bridge):
self.agent_bridge.scheduler_initialized = True
if session_id is None:
logger.info("[AgentInitializer] Scheduler service initialized")
except Exception as e:
logger.warning(f"[AgentInitializer] Failed to initialize scheduler: {e}")
# Inject scheduler dependencies
if self.agent_bridge.scheduler_initialized:
try:
from agent.tools.scheduler.integration import get_task_store, get_scheduler_service
from agent.tools import SchedulerTool
from config import conf
task_store = get_task_store()
scheduler_service = get_scheduler_service()
for tool in tools:
if isinstance(tool, SchedulerTool):
tool.task_store = task_store
tool.scheduler_service = scheduler_service
if not tool.config:
tool.config = {}
tool.config["channel_type"] = conf().get("channel_type", "unknown")
except Exception as e:
logger.warning(f"[AgentInitializer] Failed to inject scheduler dependencies: {e}")
def _initialize_skill_manager(self, workspace_root: str, session_id: Optional[str] = None):
"""Initialize skill manager"""
try:
from agent.skills import SkillManager
skill_manager = SkillManager(workspace_dir=workspace_root)
return skill_manager
except Exception as e:
logger.warning(f"[AgentInitializer] Failed to initialize SkillManager: {e}")
return None
def _get_runtime_info(self, workspace_root: str):
"""Get runtime information with dynamic time support"""
from config import conf
def get_current_time():
"""Get current time dynamically - called each time system prompt is accessed"""
now = datetime.datetime.now()
# Get timezone info
try:
offset = -time.timezone if not time.daylight else -time.altzone
hours = offset // 3600
minutes = (offset % 3600) // 60
timezone_name = f"UTC{hours:+03d}:{minutes:02d}" if minutes else f"UTC{hours:+03d}"
except Exception:
timezone_name = "UTC"
# Chinese weekday mapping
weekday_map = {
'Monday': '星期一', 'Tuesday': '星期二', 'Wednesday': '星期三',
'Thursday': '星期四', 'Friday': '星期五', 'Saturday': '星期六', 'Sunday': '星期日'
}
weekday_zh = weekday_map.get(now.strftime("%A"), now.strftime("%A"))
return {
'time': now.strftime("%Y-%m-%d %H:%M:%S"),
'weekday': weekday_zh,
'timezone': timezone_name
}
return {
"model": conf().get("model", "unknown"),
"workspace": workspace_root,
"channel": conf().get("channel_type", "unknown"),
"_get_current_time": get_current_time # Dynamic time function
}
def _migrate_config_to_env(self, workspace_root: str):
"""Migrate API keys from config.json to .env file"""
from config import conf
key_mapping = {
"open_ai_api_key": "OPENAI_API_KEY",
"open_ai_api_base": "OPENAI_API_BASE",
"gemini_api_key": "GEMINI_API_KEY",
"claude_api_key": "CLAUDE_API_KEY",
"linkai_api_key": "LINKAI_API_KEY",
}
env_file = os.path.expanduser("~/.cow/.env")
# Read existing env vars
existing_env_vars = {}
if os.path.exists(env_file):
try:
with open(env_file, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line and not line.startswith('#') and '=' in line:
key, _ = line.split('=', 1)
existing_env_vars[key.strip()] = True
except Exception as e:
logger.warning(f"[AgentInitializer] Failed to read .env file: {e}")
# Check which keys need migration
keys_to_migrate = {}
for config_key, env_key in key_mapping.items():
if env_key in existing_env_vars:
continue
value = conf().get(config_key, "")
if value and value.strip():
keys_to_migrate[env_key] = value.strip()
# Write new keys
if keys_to_migrate:
try:
env_dir = os.path.dirname(env_file)
if not os.path.exists(env_dir):
os.makedirs(env_dir, exist_ok=True)
if not os.path.exists(env_file):
open(env_file, 'a').close()
with open(env_file, 'a', encoding='utf-8') as f:
f.write('\n# Auto-migrated from config.json\n')
for key, value in keys_to_migrate.items():
f.write(f'{key}={value}\n')
os.environ[key] = value
logger.info(f"[AgentInitializer] Migrated {len(keys_to_migrate)} API keys to .env: {list(keys_to_migrate.keys())}")
except Exception as e:
logger.warning(f"[AgentInitializer] Failed to migrate API keys: {e}")