Files
chatgpt-on-wechat/agent/protocol/agent.py
cowagent e4fcfa356a refactor: 改用动态函数实现运行时信息更新(更健壮的方案)
改进点:
1. builder.py: _build_runtime_section() 支持 callable 动态时间函数
2. agent_initializer.py: 传入 get_current_time 函数而非静态时间值
3. agent.py: _rebuild_runtime_section() 动态调用时间函数并重建该部分

优势:
- 解耦模板:不依赖具体的提示词格式
- 健壮性:提示词模板改变不会导致功能失效
- 向后兼容:保留对静态时间的支持
- 性能优化:只在需要时才计算时间

相比之前的正则匹配方案,这个方案更加优雅和可维护。
2026-02-04 22:37:19 +08:00

444 lines
18 KiB
Python

import json
import time
import threading
from common.log import logger
from agent.protocol.models import LLMRequest, LLMModel
from agent.protocol.agent_stream import AgentStreamExecutor
from agent.protocol.result import AgentAction, AgentActionType, ToolResult, AgentResult
from agent.tools.base_tool import BaseTool, ToolStage
class Agent:
def __init__(self, system_prompt: str, description: str = "AI Agent", model: LLMModel = None,
tools=None, output_mode="print", max_steps=100, max_context_tokens=None,
context_reserve_tokens=None, memory_manager=None, name: str = None,
workspace_dir: str = None, skill_manager=None, enable_skills: bool = True,
runtime_info: dict = None):
"""
Initialize the Agent with system prompt, model, description.
:param system_prompt: The system prompt for the agent.
:param description: A description of the agent.
:param model: An instance of LLMModel to be used by the agent.
:param tools: Optional list of tools for the agent to use.
:param output_mode: Control how execution progress is displayed:
"print" for console output or "logger" for using logger
:param max_steps: Maximum number of steps the agent can take (default: 100)
:param max_context_tokens: Maximum tokens to keep in context (default: None, auto-calculated based on model)
:param context_reserve_tokens: Reserve tokens for new requests (default: None, auto-calculated)
:param memory_manager: Optional MemoryManager instance for memory operations
:param name: [Deprecated] The name of the agent (no longer used in single-agent system)
:param workspace_dir: Optional workspace directory for workspace-specific skills
:param skill_manager: Optional SkillManager instance (will be created if None and enable_skills=True)
:param enable_skills: Whether to enable skills support (default: True)
:param runtime_info: Optional runtime info dict (with _get_current_time callable for dynamic time)
"""
self.name = name or "Agent"
self.system_prompt = system_prompt
self.model: LLMModel = model # Instance of LLMModel
self.description = description
self.tools: list = []
self.max_steps = max_steps # max tool-call steps, default 100
self.max_context_tokens = max_context_tokens # max tokens in context
self.context_reserve_tokens = context_reserve_tokens # reserve tokens for new requests
self.captured_actions = [] # Initialize captured actions list
self.output_mode = output_mode
self.last_usage = None # Store last API response usage info
self.messages = [] # Unified message history for stream mode
self.messages_lock = threading.Lock() # Lock for thread-safe message operations
self.memory_manager = memory_manager # Memory manager for auto memory flush
self.workspace_dir = workspace_dir # Workspace directory
self.enable_skills = enable_skills # Skills enabled flag
self.runtime_info = runtime_info # Runtime info for dynamic time update
# Initialize skill manager
self.skill_manager = None
if enable_skills:
if skill_manager:
self.skill_manager = skill_manager
else:
# Auto-create skill manager
try:
from agent.skills import SkillManager
self.skill_manager = SkillManager(workspace_dir=workspace_dir)
logger.debug(f"Initialized SkillManager with {len(self.skill_manager.skills)} skills")
except Exception as e:
logger.warning(f"Failed to initialize SkillManager: {e}")
if tools:
for tool in tools:
self.add_tool(tool)
def add_tool(self, tool: BaseTool):
"""
Add a tool to the agent.
:param tool: The tool to add (either a tool instance or a tool name)
"""
# If tool is already an instance, use it directly
tool.model = self.model
self.tools.append(tool)
def get_skills_prompt(self, skill_filter=None) -> str:
"""
Get the skills prompt to append to system prompt.
:param skill_filter: Optional list of skill names to include
:return: Formatted skills prompt or empty string
"""
if not self.skill_manager:
return ""
try:
return self.skill_manager.build_skills_prompt(skill_filter=skill_filter)
except Exception as e:
logger.warning(f"Failed to build skills prompt: {e}")
return ""
def get_full_system_prompt(self, skill_filter=None) -> str:
"""
Get the full system prompt including skills.
Note: Skills are now built into the system prompt by PromptBuilder,
so we just return the base prompt directly. This method is kept for
backward compatibility.
:param skill_filter: Optional list of skill names to include (deprecated)
:return: Complete system prompt
"""
# Skills are now included in system_prompt by PromptBuilder
# If runtime_info contains dynamic time function, rebuild runtime section
if self.runtime_info and callable(self.runtime_info.get('_get_current_time')):
return self._rebuild_runtime_section(self.system_prompt)
return self.system_prompt
def _rebuild_runtime_section(self, prompt: str) -> str:
"""
Rebuild runtime info section with current time.
This method dynamically updates the runtime info section by calling
the _get_current_time function from runtime_info.
:param prompt: Original system prompt
:return: Updated system prompt with current runtime info
"""
try:
# Get current time dynamically
time_info = self.runtime_info['_get_current_time']()
# Build new runtime section
runtime_lines = [
"\n## 运行时信息\n",
"\n",
f"当前时间: {time_info['time']} {time_info['weekday']} ({time_info['timezone']})\n",
"\n"
]
# Add other runtime info
runtime_parts = []
if self.runtime_info.get("model"):
runtime_parts.append(f"模型={self.runtime_info['model']}")
if self.runtime_info.get("workspace"):
runtime_parts.append(f"工作空间={self.runtime_info['workspace']}")
if self.runtime_info.get("channel") and self.runtime_info.get("channel") != "web":
runtime_parts.append(f"渠道={self.runtime_info['channel']}")
if runtime_parts:
runtime_lines.append("运行时: " + " | ".join(runtime_parts) + "\n")
runtime_lines.append("\n")
new_runtime_section = "".join(runtime_lines)
# Find and replace the runtime section
import re
pattern = r'\n## 运行时信息\s*\n.*?(?=\n##|\Z)'
updated_prompt = re.sub(pattern, new_runtime_section.rstrip('\n'), prompt, flags=re.DOTALL)
return updated_prompt
except Exception as e:
logger.warning(f"Failed to rebuild runtime section: {e}")
return prompt
def refresh_skills(self):
"""Refresh the loaded skills."""
if self.skill_manager:
self.skill_manager.refresh_skills()
logger.info(f"Refreshed skills: {len(self.skill_manager.skills)} skills loaded")
def list_skills(self):
"""
List all loaded skills.
:return: List of skill entries or empty list
"""
if not self.skill_manager:
return []
return self.skill_manager.list_skills()
def _get_model_context_window(self) -> int:
"""
Get the model's context window size in tokens.
Auto-detect based on model name.
Model context windows:
- Claude 3.5/3.7 Sonnet: 200K tokens
- Claude 3 Opus: 200K tokens
- GPT-4 Turbo/128K: 128K tokens
- GPT-4: 8K-32K tokens
- GPT-3.5: 16K tokens
- DeepSeek: 64K tokens
:return: Context window size in tokens
"""
if self.model and hasattr(self.model, 'model'):
model_name = self.model.model.lower()
# Claude models - 200K context
if 'claude-3' in model_name or 'claude-sonnet' in model_name:
return 200000
# GPT-4 models
elif 'gpt-4' in model_name:
if 'turbo' in model_name or '128k' in model_name:
return 128000
elif '32k' in model_name:
return 32000
else:
return 8000
# GPT-3.5
elif 'gpt-3.5' in model_name:
if '16k' in model_name:
return 16000
else:
return 4000
# DeepSeek
elif 'deepseek' in model_name:
return 64000
# Gemini models
elif 'gemini' in model_name:
if '2.0' in model_name or 'exp' in model_name:
return 2000000 # Gemini 2.0: 2M tokens
else:
return 1000000 # Gemini 1.5: 1M tokens
# Default conservative value
return 128000
def _get_context_reserve_tokens(self) -> int:
"""
Get the number of tokens to reserve for new requests.
This prevents context overflow by keeping a buffer.
:return: Number of tokens to reserve
"""
if self.context_reserve_tokens is not None:
return self.context_reserve_tokens
# Reserve ~10% of context window, with min 10K and max 200K
context_window = self._get_model_context_window()
reserve = int(context_window * 0.1)
return max(10000, min(200000, reserve))
def _estimate_message_tokens(self, message: dict) -> int:
"""
Estimate token count for a message using chars/4 heuristic.
This is a conservative estimate (tends to overestimate).
:param message: Message dict with 'role' and 'content'
:return: Estimated token count
"""
content = message.get('content', '')
if isinstance(content, str):
return max(1, len(content) // 4)
elif isinstance(content, list):
# Handle multi-part content (text + images)
total_chars = 0
for part in content:
if isinstance(part, dict) and part.get('type') == 'text':
total_chars += len(part.get('text', ''))
elif isinstance(part, dict) and part.get('type') == 'image':
# Estimate images as ~1200 tokens
total_chars += 4800
return max(1, total_chars // 4)
return 1
def _find_tool(self, tool_name: str):
"""Find and return a tool with the specified name"""
for tool in self.tools:
if tool.name == tool_name:
# Only pre-process stage tools can be actively called
if tool.stage == ToolStage.PRE_PROCESS:
tool.model = self.model
tool.context = self # Set tool context
return tool
else:
# If it's a post-process tool, return None to prevent direct calling
logger.warning(f"Tool {tool_name} is a post-process tool and cannot be called directly.")
return None
return None
# output function based on mode
def output(self, message="", end="\n"):
if self.output_mode == "print":
print(message, end=end)
elif message:
logger.info(message)
def _execute_post_process_tools(self):
"""Execute all post-process stage tools"""
# Get all post-process stage tools
post_process_tools = [tool for tool in self.tools if tool.stage == ToolStage.POST_PROCESS]
# Execute each tool
for tool in post_process_tools:
# Set tool context
tool.context = self
# Record start time for execution timing
start_time = time.time()
# Execute tool (with empty parameters, tool will extract needed info from context)
result = tool.execute({})
# Calculate execution time
execution_time = time.time() - start_time
# Capture tool use for tracking
self.capture_tool_use(
tool_name=tool.name,
input_params={}, # Post-process tools typically don't take parameters
output=result.result,
status=result.status,
error_message=str(result.result) if result.status == "error" else None,
execution_time=execution_time
)
# Log result
if result.status == "success":
# Print tool execution result in the desired format
self.output(f"\n🛠️ {tool.name}: {json.dumps(result.result)}")
else:
# Print failure in print mode
self.output(f"\n🛠️ {tool.name}: {json.dumps({'status': 'error', 'message': str(result.result)})}")
def capture_tool_use(self, tool_name, input_params, output, status, thought=None, error_message=None,
execution_time=0.0):
"""
Capture a tool use action.
:param thought: thought content
:param tool_name: Name of the tool used
:param input_params: Parameters passed to the tool
:param output: Output from the tool
:param status: Status of the tool execution
:param error_message: Error message if the tool execution failed
:param execution_time: Time taken to execute the tool
"""
tool_result = ToolResult(
tool_name=tool_name,
input_params=input_params,
output=output,
status=status,
error_message=error_message,
execution_time=execution_time
)
action = AgentAction(
agent_id=self.id if hasattr(self, 'id') else str(id(self)),
agent_name=self.name,
action_type=AgentActionType.TOOL_USE,
tool_result=tool_result,
thought=thought
)
self.captured_actions.append(action)
return action
def run_stream(self, user_message: str, on_event=None, clear_history: bool = False, skill_filter=None) -> str:
"""
Execute single agent task with streaming (based on tool-call)
This method supports:
- Streaming output
- Multi-turn reasoning based on tool-call
- Event callbacks
- Persistent conversation history across calls
Args:
user_message: User message
on_event: Event callback function callback(event: dict)
event = {"type": str, "timestamp": float, "data": dict}
clear_history: If True, clear conversation history before this call (default: False)
skill_filter: Optional list of skill names to include in this run
Returns:
Final response text
Example:
# Multi-turn conversation with memory
response1 = agent.run_stream("My name is Alice")
response2 = agent.run_stream("What's my name?") # Will remember Alice
# Single-turn without memory
response = agent.run_stream("Hello", clear_history=True)
"""
# Clear history if requested
if clear_history:
with self.messages_lock:
self.messages = []
# Get model to use
if not self.model:
raise ValueError("No model available for agent")
# Get full system prompt with skills
full_system_prompt = self.get_full_system_prompt(skill_filter=skill_filter)
# Create a copy of messages for this execution to avoid concurrent modification
# Record the original length to track which messages are new
with self.messages_lock:
messages_copy = self.messages.copy()
original_length = len(self.messages)
# Get max_context_turns from config
from config import conf
max_context_turns = conf().get("agent_max_context_turns", 30)
# Create stream executor with copied message history
executor = AgentStreamExecutor(
agent=self,
model=self.model,
system_prompt=full_system_prompt,
tools=self.tools,
max_turns=self.max_steps,
on_event=on_event,
messages=messages_copy, # Pass copied message history
max_context_turns=max_context_turns
)
# Execute
response = executor.run_stream(user_message)
# Append only the NEW messages from this execution (thread-safe)
# This allows concurrent requests to both contribute to history
with self.messages_lock:
new_messages = executor.messages[original_length:]
self.messages.extend(new_messages)
# Store executor reference for agent_bridge to access files_to_send
self.stream_executor = executor
# Execute all post-process tools
self._execute_post_process_tools()
return response
def clear_history(self):
"""Clear conversation history and captured actions"""
self.messages = []
self.captured_actions = []