Files
chatgpt-on-wechat/agent/memory/summarizer.py
2026-02-01 17:04:46 +08:00

257 lines
9.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
"""
Memory flush manager
Triggers memory flush before context compaction (similar to clawdbot)
"""
from typing import Optional, Callable, Any
from pathlib import Path
from datetime import datetime
class MemoryFlushManager:
"""
Manages memory flush operations before context compaction
Similar to clawdbot's memory flush mechanism:
- Triggers when context approaches token limit
- Runs a silent agent turn to write memories to disk
- Uses memory/YYYY-MM-DD.md for daily notes
- Uses MEMORY.md (workspace root) for long-term curated memories
"""
def __init__(
self,
workspace_dir: Path,
llm_model: Optional[Any] = None
):
"""
Initialize memory flush manager
Args:
workspace_dir: Workspace directory
llm_model: LLM model for agent execution (optional)
"""
self.workspace_dir = workspace_dir
self.llm_model = llm_model
self.memory_dir = workspace_dir / "memory"
self.memory_dir.mkdir(parents=True, exist_ok=True)
# Tracking
self.last_flush_token_count: Optional[int] = None
self.last_flush_timestamp: Optional[datetime] = None
self.turn_count: int = 0 # 对话轮数计数器
def should_flush(
self,
current_tokens: int = 0,
token_threshold: int = 50000,
turn_threshold: int = 20
) -> bool:
"""
Determine if memory flush should be triggered
独立的 flush 触发机制,不依赖模型 context window:
- Token 阈值: 达到 50K tokens 时触发
- 轮次阈值: 达到 20 轮对话时触发
Args:
current_tokens: Current session token count
token_threshold: Token threshold to trigger flush (default: 50K)
turn_threshold: Turn threshold to trigger flush (default: 20)
Returns:
True if flush should run
"""
# 检查 token 阈值
if current_tokens > 0 and current_tokens >= token_threshold:
# 避免重复 flush
if self.last_flush_token_count is not None:
if current_tokens <= self.last_flush_token_count + 5000:
return False
return True
# 检查轮次阈值
if self.turn_count >= turn_threshold:
return True
return False
def get_today_memory_file(self, user_id: Optional[str] = None) -> Path:
"""
Get today's memory file path: memory/YYYY-MM-DD.md
Args:
user_id: Optional user ID for user-specific memory
Returns:
Path to today's memory file
"""
today = datetime.now().strftime("%Y-%m-%d")
if user_id:
user_dir = self.memory_dir / "users" / user_id
user_dir.mkdir(parents=True, exist_ok=True)
return user_dir / f"{today}.md"
else:
return self.memory_dir / f"{today}.md"
def get_main_memory_file(self, user_id: Optional[str] = None) -> Path:
"""
Get main memory file path: MEMORY.md (workspace root)
Args:
user_id: Optional user ID for user-specific memory
Returns:
Path to main memory file
"""
if user_id:
user_dir = self.memory_dir / "users" / user_id
user_dir.mkdir(parents=True, exist_ok=True)
return user_dir / "MEMORY.md"
else:
# Return workspace root MEMORY.md
return Path(self.workspace_dir) / "MEMORY.md"
def create_flush_prompt(self) -> str:
"""
Create prompt for memory flush turn
Similar to clawdbot's DEFAULT_MEMORY_FLUSH_PROMPT
"""
today = datetime.now().strftime("%Y-%m-%d")
return (
f"Pre-compaction memory flush. "
f"Store durable memories now (use memory/{today}.md for daily notes; "
f"create memory/ if needed). "
f"\n\n"
f"重要提示:\n"
f"- MEMORY.md: 记录最核心、最常用的信息(例如重要规则、偏好、决策、要求等)\n"
f" 如果 MEMORY.md 过长,可以精简或移除不再重要的内容。避免冗长描述,用关键词和要点形式记录\n"
f"- memory/{today}.md: 记录当天发生的事件、关键信息、经验教训、对话过程摘要等,突出重点\n"
f"- 如果没有重要内容需要记录,回复 NO_REPLY\n"
)
def create_flush_system_prompt(self) -> str:
"""
Create system prompt for memory flush turn
Similar to clawdbot's DEFAULT_MEMORY_FLUSH_SYSTEM_PROMPT
"""
return (
"Pre-compaction memory flush turn. "
"The session is near auto-compaction; capture durable memories to disk. "
"\n\n"
"记忆写入原则:\n"
"1. MEMORY.md 精简原则: 只记录核心信息(<2000 tokens\n"
" - 记录重要规则、偏好、决策、要求等需要长期记住的关键信息,无需记录过多细节\n"
" - 如果 MEMORY.md 过长,可以根据需要精简或删除过时内容\n"
"\n"
"2. 天级记忆 (memory/YYYY-MM-DD.md):\n"
" - 记录当天的重要事件、关键信息、经验教训、对话过程摘要等,确保核心信息点被完整记录\n"
"\n"
"3. 判断标准:\n"
" - 这个信息未来会经常用到吗?→ MEMORY.md\n"
" - 这是今天的重要事件或决策吗?→ memory/YYYY-MM-DD.md\n"
" - 这是临时性的、不重要的内容吗?→ 不记录\n"
"\n"
"You may reply, but usually NO_REPLY is correct."
)
async def execute_flush(
self,
agent_executor: Callable,
current_tokens: int,
user_id: Optional[str] = None,
**executor_kwargs
) -> bool:
"""
Execute memory flush by running a silent agent turn
Args:
agent_executor: Function to execute agent with prompt
current_tokens: Current token count
user_id: Optional user ID
**executor_kwargs: Additional kwargs for agent executor
Returns:
True if flush completed successfully
"""
try:
# Create flush prompts
prompt = self.create_flush_prompt()
system_prompt = self.create_flush_system_prompt()
# Execute agent turn (silent, no user-visible reply expected)
await agent_executor(
prompt=prompt,
system_prompt=system_prompt,
silent=True, # NO_REPLY expected
**executor_kwargs
)
# Track flush
self.last_flush_token_count = current_tokens
self.last_flush_timestamp = datetime.now()
self.turn_count = 0 # 重置轮数计数器
return True
except Exception as e:
print(f"Memory flush failed: {e}")
return False
def increment_turn(self):
"""增加对话轮数计数"""
self.turn_count += 1
def get_status(self) -> dict:
"""Get memory flush status"""
return {
'last_flush_tokens': self.last_flush_token_count,
'last_flush_time': self.last_flush_timestamp.isoformat() if self.last_flush_timestamp else None,
'today_file': str(self.get_today_memory_file()),
'main_file': str(self.get_main_memory_file())
}
def create_memory_files_if_needed(workspace_dir: Path, user_id: Optional[str] = None):
"""
Create default memory files if they don't exist
Args:
workspace_dir: Workspace directory
user_id: Optional user ID for user-specific files
"""
memory_dir = workspace_dir / "memory"
memory_dir.mkdir(parents=True, exist_ok=True)
# Create main MEMORY.md in workspace root
if user_id:
user_dir = memory_dir / "users" / user_id
user_dir.mkdir(parents=True, exist_ok=True)
main_memory = user_dir / "MEMORY.md"
else:
main_memory = Path(workspace_dir) / "MEMORY.md"
if not main_memory.exists():
# Create empty file or with minimal structure (no obvious "Memory" header)
# Following clawdbot's approach: memories should blend naturally into context
main_memory.write_text("")
# Create today's memory file
today = datetime.now().strftime("%Y-%m-%d")
if user_id:
user_dir = memory_dir / "users" / user_id
today_memory = user_dir / f"{today}.md"
else:
today_memory = memory_dir / f"{today}.md"
if not today_memory.exists():
today_memory.write_text(
f"# Daily Memory: {today}\n\n"
f"Day-to-day notes and running context.\n\n"
)