Files
chatgpt-on-wechat/agent/memory/config.py

120 lines
3.4 KiB
Python

"""
Memory configuration module
Provides global memory configuration with simplified workspace structure
"""
from __future__ import annotations
import os
from dataclasses import dataclass, field
from typing import Optional, List
from pathlib import Path
@dataclass
class MemoryConfig:
"""Configuration for memory storage and search"""
# Storage paths (default: ~/cow)
workspace_root: str = field(default_factory=lambda: os.path.expanduser("~/cow"))
# Embedding config
embedding_provider: str = "openai" # "openai" | "local"
embedding_model: str = "text-embedding-3-small"
embedding_dim: int = 1536
# Chunking config
chunk_max_tokens: int = 500
chunk_overlap_tokens: int = 50
# Search config
max_results: int = 10
min_score: float = 0.1
# Hybrid search weights
vector_weight: float = 0.7
keyword_weight: float = 0.3
# Memory sources
sources: List[str] = field(default_factory=lambda: ["memory", "session"])
# Sync config
enable_auto_sync: bool = True
sync_on_search: bool = True
# Memory flush config (独立于模型 context window)
flush_token_threshold: int = 50000 # 50K tokens 触发 flush
flush_turn_threshold: int = 20 # 20 轮对话触发 flush (用户+AI各一条为一轮)
def get_workspace(self) -> Path:
"""Get workspace root directory"""
return Path(self.workspace_root)
def get_memory_dir(self) -> Path:
"""Get memory files directory"""
return self.get_workspace() / "memory"
def get_db_path(self) -> Path:
"""Get SQLite database path for long-term memory index"""
index_dir = self.get_memory_dir() / "long-term"
index_dir.mkdir(parents=True, exist_ok=True)
return index_dir / "index.db"
def get_skills_dir(self) -> Path:
"""Get skills directory"""
return self.get_workspace() / "skills"
def get_agent_workspace(self, agent_name: Optional[str] = None) -> Path:
"""
Get workspace directory for an agent
Args:
agent_name: Optional agent name (not used in current implementation)
Returns:
Path to workspace directory
"""
workspace = self.get_workspace()
# Ensure workspace directory exists
workspace.mkdir(parents=True, exist_ok=True)
return workspace
# Global memory configuration
_global_memory_config: Optional[MemoryConfig] = None
def get_default_memory_config() -> MemoryConfig:
"""
Get the global memory configuration.
If not set, returns a default configuration.
Returns:
MemoryConfig instance
"""
global _global_memory_config
if _global_memory_config is None:
_global_memory_config = MemoryConfig()
return _global_memory_config
def set_global_memory_config(config: MemoryConfig):
"""
Set the global memory configuration.
This should be called before creating any MemoryManager instances.
Args:
config: MemoryConfig instance to use globally
Example:
>>> from agent.memory import MemoryConfig, set_global_memory_config
>>> config = MemoryConfig(
... workspace_root="~/my_agents",
... embedding_provider="openai",
... vector_weight=0.8
... )
>>> set_global_memory_config(config)
"""
global _global_memory_config
_global_memory_config = config