mirror of
https://github.com/zhayujie/chatgpt-on-wechat.git
synced 2026-01-19 17:51:01 +08:00
277 lines
12 KiB
Python
277 lines
12 KiB
Python
# encoding:utf-8
|
||
|
||
import time
|
||
import json
|
||
import openai
|
||
import openai.error
|
||
from bot.bot import Bot
|
||
from bot.session_manager import SessionManager
|
||
from bridge.context import ContextType
|
||
from bridge.reply import Reply, ReplyType
|
||
from common.log import logger
|
||
from config import conf, load_config
|
||
from .modelscope_session import ModelScopeSession
|
||
import requests
|
||
|
||
|
||
# ModelScope对话模型API
|
||
class ModelScopeBot(Bot):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.sessions = SessionManager(ModelScopeSession, model=conf().get("model") or "Qwen/Qwen2.5-7B-Instruct")
|
||
model = conf().get("model") or "Qwen/Qwen2.5-7B-Instruct"
|
||
if model == "modelscope":
|
||
model = "Qwen/Qwen2.5-7B-Instruct"
|
||
self.args = {
|
||
"model": model, # 对话模型的名称
|
||
"temperature": conf().get("temperature", 0.3), # 如果设置,值域须为 [0, 1] 我们推荐 0.3,以达到较合适的效果。
|
||
"top_p": conf().get("top_p", 1.0), # 使用默认值
|
||
}
|
||
self.api_key = conf().get("modelscope_api_key")
|
||
self.base_url = conf().get("modelscope_base_url", "https://api-inference.modelscope.cn/v1/chat/completions")
|
||
"""
|
||
需要获取ModelScope支持API-inference的模型名称列表,请到魔搭社区官网模型中心查看 https://modelscope.cn/models?filter=inference_type&page=1。
|
||
或者使用命令 curl https://api-inference.modelscope.cn/v1/models 对模型列表和ID进行获取。查看commend/const.py文件也可以获取模型列表。
|
||
获取ModelScope的免费API Key,请到魔搭社区官网用户中心查看获取方式 https://modelscope.cn/docs/model-service/API-Inference/intro。
|
||
"""
|
||
def reply(self, query, context=None):
|
||
# acquire reply content
|
||
if context.type == ContextType.TEXT:
|
||
logger.info("[MODELSCOPE_AI] query={}".format(query))
|
||
|
||
session_id = context["session_id"]
|
||
reply = None
|
||
clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"])
|
||
if query in clear_memory_commands:
|
||
self.sessions.clear_session(session_id)
|
||
reply = Reply(ReplyType.INFO, "记忆已清除")
|
||
elif query == "#清除所有":
|
||
self.sessions.clear_all_session()
|
||
reply = Reply(ReplyType.INFO, "所有人记忆已清除")
|
||
elif query == "#更新配置":
|
||
load_config()
|
||
reply = Reply(ReplyType.INFO, "配置已更新")
|
||
if reply:
|
||
return reply
|
||
session = self.sessions.session_query(query, session_id)
|
||
logger.debug("[MODELSCOPE_AI] session query={}".format(session.messages))
|
||
|
||
model = context.get("modelscope_model")
|
||
new_args = self.args.copy()
|
||
if model:
|
||
new_args["model"] = model
|
||
|
||
if new_args["model"] == "Qwen/QwQ-32B":
|
||
reply_content = self.reply_text_stream(session, args=new_args)
|
||
else:
|
||
reply_content = self.reply_text(session, args=new_args)
|
||
|
||
logger.debug(
|
||
"[MODELSCOPE_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(
|
||
session.messages,
|
||
session_id,
|
||
reply_content["content"],
|
||
reply_content["completion_tokens"],
|
||
)
|
||
)
|
||
if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0:
|
||
# 只有当 content 为空且 completion_tokens 为 0 时才标记为错误
|
||
if len(reply_content["content"]) == 0:
|
||
reply = Reply(ReplyType.ERROR, reply_content["content"])
|
||
else:
|
||
reply = Reply(ReplyType.TEXT, reply_content["content"])
|
||
elif reply_content["completion_tokens"] > 0:
|
||
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
|
||
reply = Reply(ReplyType.TEXT, reply_content["content"])
|
||
else:
|
||
reply = Reply(ReplyType.ERROR, reply_content["content"])
|
||
logger.debug("[MODELSCOPE_AI] reply {} used 0 tokens.".format(reply_content))
|
||
return reply
|
||
elif context.type == ContextType.IMAGE_CREATE:
|
||
ok, retstring = self.create_img(query, 0)
|
||
reply = None
|
||
if ok:
|
||
reply = Reply(ReplyType.IMAGE_URL, retstring)
|
||
else:
|
||
reply = Reply(ReplyType.ERROR, retstring)
|
||
return reply
|
||
else:
|
||
reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type))
|
||
return reply
|
||
|
||
def reply_text(self, session: ModelScopeSession, args=None, retry_count=0) -> dict:
|
||
"""
|
||
call openai's ChatCompletion to get the answer
|
||
:param session: a conversation session
|
||
:param session_id: session id
|
||
:param retry_count: retry count
|
||
:return: {}
|
||
"""
|
||
try:
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": "Bearer " + self.api_key
|
||
}
|
||
|
||
body = args
|
||
body["messages"] = session.messages
|
||
res = requests.post(
|
||
self.base_url,
|
||
headers=headers,
|
||
data=json.dumps(body)
|
||
)
|
||
|
||
if res.status_code == 200:
|
||
response = res.json()
|
||
return {
|
||
"total_tokens": response["usage"]["total_tokens"],
|
||
"completion_tokens": response["usage"]["completion_tokens"],
|
||
"content": response["choices"][0]["message"]["content"]
|
||
}
|
||
else:
|
||
response = res.json()
|
||
if "errors" in response:
|
||
error = response.get("errors")
|
||
elif "error" in response:
|
||
error = response.get("error")
|
||
else:
|
||
error = "Unknown error"
|
||
logger.error(f"[MODELSCOPE_AI] chat failed, status_code={res.status_code}, "
|
||
f"msg={error.get('message')}, type={error.get('type')}")
|
||
|
||
result = {"completion_tokens": 0, "content": "提问太快啦,请休息一下再问我吧"}
|
||
need_retry = False
|
||
if res.status_code >= 500:
|
||
# server error, need retry
|
||
logger.warn(f"[MODELSCOPE_AI] do retry, times={retry_count}")
|
||
need_retry = retry_count < 2
|
||
elif res.status_code == 401:
|
||
result["content"] = "授权失败,请检查API Key是否正确"
|
||
elif res.status_code == 429:
|
||
result["content"] = "请求过于频繁,请稍后再试"
|
||
need_retry = retry_count < 2
|
||
else:
|
||
need_retry = False
|
||
|
||
if need_retry:
|
||
time.sleep(3)
|
||
return self.reply_text(session, args, retry_count + 1)
|
||
else:
|
||
return result
|
||
except Exception as e:
|
||
logger.exception(e)
|
||
need_retry = retry_count < 2
|
||
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
|
||
if need_retry:
|
||
return self.reply_text(session, args, retry_count + 1)
|
||
else:
|
||
return result
|
||
|
||
def reply_text_stream(self, session: ModelScopeSession, args=None, retry_count=0) -> dict:
|
||
"""
|
||
call ModelScope's ChatCompletion to get the answer with stream response
|
||
:param session: a conversation session
|
||
:param session_id: session id
|
||
:param retry_count: retry count
|
||
:return: {}
|
||
"""
|
||
try:
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": "Bearer " + self.api_key
|
||
}
|
||
|
||
body = args
|
||
body["messages"] = session.messages
|
||
body["stream"] = True # 启用流式响应
|
||
|
||
res = requests.post(
|
||
self.base_url,
|
||
headers=headers,
|
||
data=json.dumps(body),
|
||
stream=True
|
||
)
|
||
if res.status_code == 200:
|
||
content = ""
|
||
for line in res.iter_lines():
|
||
if line:
|
||
decoded_line = line.decode('utf-8')
|
||
if decoded_line.startswith("data: "):
|
||
try:
|
||
json_data = json.loads(decoded_line[6:])
|
||
delta_content = json_data.get("choices", [{}])[0].get("delta", {}).get("content", "")
|
||
if delta_content:
|
||
content += delta_content
|
||
except json.JSONDecodeError as e:
|
||
pass
|
||
return {
|
||
"total_tokens": 1, # 流式响应通常不返回token使用情况
|
||
"completion_tokens": 1,
|
||
"content": content
|
||
}
|
||
else:
|
||
response = res.json()
|
||
if "errors" in response:
|
||
error = response.get("errors")
|
||
elif "error" in response:
|
||
error = response.get("error")
|
||
else:
|
||
error = "Unknown error"
|
||
logger.error(f"[MODELSCOPE_AI] chat failed, status_code={res.status_code}, "
|
||
f"msg={error.get('message')}, type={error.get('type')}")
|
||
|
||
result = {"completion_tokens": 0, "content": "提问太快啦,请休息一下再问我吧"}
|
||
need_retry = False
|
||
if res.status_code >= 500:
|
||
# server error, need retry
|
||
logger.warn(f"[MODELSCOPE_AI] do retry, times={retry_count}")
|
||
need_retry = retry_count < 2
|
||
elif res.status_code == 401:
|
||
result["content"] = "授权失败,请检查API Key是否正确"
|
||
elif res.status_code == 429:
|
||
result["content"] = "请求过于频繁,请稍后再试"
|
||
need_retry = retry_count < 2
|
||
else:
|
||
need_retry = False
|
||
|
||
if need_retry:
|
||
time.sleep(3)
|
||
return self.reply_text_stream(session, args, retry_count + 1)
|
||
else:
|
||
return result
|
||
except Exception as e:
|
||
logger.exception(e)
|
||
need_retry = retry_count < 2
|
||
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
|
||
if need_retry:
|
||
return self.reply_text_stream(session, args, retry_count + 1)
|
||
else:
|
||
return result
|
||
def create_img(self, query, retry_count=0):
|
||
try:
|
||
logger.info("[ModelScopeImage] image_query={}".format(query))
|
||
headers = {
|
||
"Content-Type": "application/json; charset=utf-8", # 明确指定编码
|
||
"Authorization": f"Bearer {self.api_key}"
|
||
}
|
||
payload = {
|
||
"prompt": query, # required
|
||
"n": 1,
|
||
"model": conf().get("text_to_image"),
|
||
}
|
||
url = "https://api-inference.modelscope.cn/v1/images/generations"
|
||
|
||
# 手动序列化并保留中文(禁用 ASCII 转义)
|
||
json_payload = json.dumps(payload, ensure_ascii=False).encode('utf-8')
|
||
|
||
# 使用 data 参数发送原始字符串(requests 会自动处理编码)
|
||
res = requests.post(url, headers=headers, data=json_payload)
|
||
|
||
response_data = res.json()
|
||
image_url = response_data['images'][0]['url']
|
||
logger.info("[ModelScopeImage] image_url={}".format(image_url))
|
||
return True, image_url
|
||
|
||
except Exception as e:
|
||
logger.error(format(e))
|
||
return False, "画图出现问题,请休息一下再问我吧" |