Files
chatgpt-on-wechat/bot/claudeapi/claude_api_bot.py

133 lines
5.6 KiB
Python

# encoding:utf-8
import time
import openai
import openai.error
import anthropic
from bot.bot import Bot
from bot.openai.open_ai_image import OpenAIImage
from bot.baidu.baidu_wenxin_session import BaiduWenxinSession
from bot.session_manager import SessionManager
from bridge.context import ContextType
from bridge.reply import Reply, ReplyType
from common.log import logger
from common import const
from config import conf
user_session = dict()
# OpenAI对话模型API (可用)
class ClaudeAPIBot(Bot, OpenAIImage):
def __init__(self):
super().__init__()
proxy = conf().get("proxy", None)
base_url = conf().get("open_ai_api_base", None) # 复用"open_ai_api_base"参数作为base_url
self.claudeClient = anthropic.Anthropic(
api_key=conf().get("claude_api_key"),
proxies=proxy if proxy else None,
base_url=base_url if base_url else None
)
self.sessions = SessionManager(BaiduWenxinSession, model=conf().get("model") or "text-davinci-003")
def reply(self, query, context=None):
# acquire reply content
if context and context.type:
if context.type == ContextType.TEXT:
logger.info("[CLAUDE_API] query={}".format(query))
session_id = context["session_id"]
reply = None
if query == "#清除记忆":
self.sessions.clear_session(session_id)
reply = Reply(ReplyType.INFO, "记忆已清除")
elif query == "#清除所有":
self.sessions.clear_all_session()
reply = Reply(ReplyType.INFO, "所有人记忆已清除")
else:
session = self.sessions.session_query(query, session_id)
result = self.reply_text(session)
logger.info(result)
total_tokens, completion_tokens, reply_content = (
result["total_tokens"],
result["completion_tokens"],
result["content"],
)
logger.debug(
"[CLAUDE_API] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(str(session), session_id, reply_content, completion_tokens)
)
if total_tokens == 0:
reply = Reply(ReplyType.ERROR, reply_content)
else:
self.sessions.session_reply(reply_content, session_id, total_tokens)
reply = Reply(ReplyType.TEXT, reply_content)
return reply
elif context.type == ContextType.IMAGE_CREATE:
ok, retstring = self.create_img(query, 0)
reply = None
if ok:
reply = Reply(ReplyType.IMAGE_URL, retstring)
else:
reply = Reply(ReplyType.ERROR, retstring)
return reply
def reply_text(self, session: BaiduWenxinSession, retry_count=0):
try:
actual_model = self._model_mapping(conf().get("model"))
response = self.claudeClient.messages.create(
model=actual_model,
max_tokens=4096,
system=conf().get("character_desc", ""),
messages=session.messages
)
# response = openai.Completion.create(prompt=str(session), **self.args)
res_content = response.content[0].text.strip().replace("<|endoftext|>", "")
total_tokens = response.usage.input_tokens+response.usage.output_tokens
completion_tokens = response.usage.output_tokens
logger.info("[CLAUDE_API] reply={}".format(res_content))
return {
"total_tokens": total_tokens,
"completion_tokens": completion_tokens,
"content": res_content,
}
except Exception as e:
need_retry = retry_count < 2
result = {"total_tokens": 0, "completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
if isinstance(e, openai.error.RateLimitError):
logger.warn("[CLAUDE_API] RateLimitError: {}".format(e))
result["content"] = "提问太快啦,请休息一下再问我吧"
if need_retry:
time.sleep(20)
elif isinstance(e, openai.error.Timeout):
logger.warn("[CLAUDE_API] Timeout: {}".format(e))
result["content"] = "我没有收到你的消息"
if need_retry:
time.sleep(5)
elif isinstance(e, openai.error.APIConnectionError):
logger.warn("[CLAUDE_API] APIConnectionError: {}".format(e))
need_retry = False
result["content"] = "我连接不到你的网络"
else:
logger.warn("[CLAUDE_API] Exception: {}".format(e))
need_retry = False
self.sessions.clear_session(session.session_id)
if need_retry:
logger.warn("[CLAUDE_API] 第{}次重试".format(retry_count + 1))
return self.reply_text(session, retry_count + 1)
else:
return result
def _model_mapping(self, model) -> str:
if model == "claude-3-opus":
return const.CLAUDE_3_OPUS
elif model == "claude-3-sonnet":
return const.CLAUDE_3_SONNET
elif model == "claude-3-haiku":
return const.CLAUDE_3_HAIKU
elif model == "claude-3.5-sonnet":
return const.CLAUDE_35_SONNET
return model