# encoding:utf-8 import time import openai import openai.error from models.bot import Bot from models.openai_compatible_bot import OpenAICompatibleBot from models.openai.open_ai_image import OpenAIImage from models.openai.open_ai_session import OpenAISession from models.session_manager import SessionManager from bridge.context import ContextType from bridge.reply import Reply, ReplyType from common.log import logger from config import conf user_session = dict() # OpenAI对话模型API (可用) class OpenAIBot(Bot, OpenAIImage, OpenAICompatibleBot): def __init__(self): super().__init__() openai.api_key = conf().get("open_ai_api_key") if conf().get("open_ai_api_base"): openai.api_base = conf().get("open_ai_api_base") proxy = conf().get("proxy") if proxy: openai.proxy = proxy self.sessions = SessionManager(OpenAISession, model=conf().get("model") or "text-davinci-003") self.args = { "model": conf().get("model") or "text-davinci-003", # 对话模型的名称 "temperature": conf().get("temperature", 0.9), # 值在[0,1]之间,越大表示回复越具有不确定性 "max_tokens": 1200, # 回复最大的字符数 "top_p": 1, "frequency_penalty": conf().get("frequency_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 "presence_penalty": conf().get("presence_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 "request_timeout": conf().get("request_timeout", None), # 请求超时时间,openai接口默认设置为600,对于难问题一般需要较长时间 "timeout": conf().get("request_timeout", None), # 重试超时时间,在这个时间内,将会自动重试 "stop": ["\n\n\n"], } def get_api_config(self): """Get API configuration for OpenAI-compatible base class""" return { 'api_key': conf().get("open_ai_api_key"), 'api_base': conf().get("open_ai_api_base"), 'model': conf().get("model", "text-davinci-003"), 'default_temperature': conf().get("temperature", 0.9), 'default_top_p': conf().get("top_p", 1.0), 'default_frequency_penalty': conf().get("frequency_penalty", 0.0), 'default_presence_penalty': conf().get("presence_penalty", 0.0), } def reply(self, query, context=None): # acquire reply content if context and context.type: if context.type == ContextType.TEXT: logger.info("[OPEN_AI] query={}".format(query)) session_id = context["session_id"] reply = None if query == "#清除记忆": self.sessions.clear_session(session_id) reply = Reply(ReplyType.INFO, "记忆已清除") elif query == "#清除所有": self.sessions.clear_all_session() reply = Reply(ReplyType.INFO, "所有人记忆已清除") else: session = self.sessions.session_query(query, session_id) result = self.reply_text(session) total_tokens, completion_tokens, reply_content = ( result["total_tokens"], result["completion_tokens"], result["content"], ) logger.debug( "[OPEN_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(str(session), session_id, reply_content, completion_tokens) ) if total_tokens == 0: reply = Reply(ReplyType.ERROR, reply_content) else: self.sessions.session_reply(reply_content, session_id, total_tokens) reply = Reply(ReplyType.TEXT, reply_content) return reply elif context.type == ContextType.IMAGE_CREATE: ok, retstring = self.create_img(query, 0) reply = None if ok: reply = Reply(ReplyType.IMAGE_URL, retstring) else: reply = Reply(ReplyType.ERROR, retstring) return reply def reply_text(self, session: OpenAISession, retry_count=0): try: response = openai.Completion.create(prompt=str(session), **self.args) res_content = response.choices[0]["text"].strip().replace("<|endoftext|>", "") total_tokens = response["usage"]["total_tokens"] completion_tokens = response["usage"]["completion_tokens"] logger.info("[OPEN_AI] reply={}".format(res_content)) return { "total_tokens": total_tokens, "completion_tokens": completion_tokens, "content": res_content, } except Exception as e: need_retry = retry_count < 2 result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"} if isinstance(e, openai.error.RateLimitError): logger.warn("[OPEN_AI] RateLimitError: {}".format(e)) result["content"] = "提问太快啦,请休息一下再问我吧" if need_retry: time.sleep(20) elif isinstance(e, openai.error.Timeout): logger.warn("[OPEN_AI] Timeout: {}".format(e)) result["content"] = "我没有收到你的消息" if need_retry: time.sleep(5) elif isinstance(e, openai.error.APIConnectionError): logger.warn("[OPEN_AI] APIConnectionError: {}".format(e)) need_retry = False result["content"] = "我连接不到你的网络" else: logger.warn("[OPEN_AI] Exception: {}".format(e)) need_retry = False self.sessions.clear_session(session.session_id) if need_retry: logger.warn("[OPEN_AI] 第{}次重试".format(retry_count + 1)) return self.reply_text(session, retry_count + 1) else: return result def call_with_tools(self, messages, tools=None, stream=False, **kwargs): """ Call OpenAI API with tool support for agent integration Note: This bot uses the old Completion API which doesn't support tools. For tool support, use ChatGPTBot instead. This method converts to ChatCompletion API when tools are provided. Args: messages: List of messages tools: List of tool definitions (OpenAI format) stream: Whether to use streaming **kwargs: Additional parameters Returns: Formatted response in OpenAI format or generator for streaming """ try: # The old Completion API doesn't support tools # We need to use ChatCompletion API instead logger.info("[OPEN_AI] Using ChatCompletion API for tool support") # Build request parameters for ChatCompletion request_params = { "model": kwargs.get("model", conf().get("model") or "gpt-4.1"), "messages": messages, "temperature": kwargs.get("temperature", conf().get("temperature", 0.9)), "top_p": kwargs.get("top_p", 1), "frequency_penalty": kwargs.get("frequency_penalty", conf().get("frequency_penalty", 0.0)), "presence_penalty": kwargs.get("presence_penalty", conf().get("presence_penalty", 0.0)), "stream": stream } # Add max_tokens if specified if kwargs.get("max_tokens"): request_params["max_tokens"] = kwargs["max_tokens"] # Add tools if provided if tools: request_params["tools"] = tools request_params["tool_choice"] = kwargs.get("tool_choice", "auto") # Make API call using ChatCompletion if stream: return self._handle_stream_response(request_params) else: return self._handle_sync_response(request_params) except Exception as e: logger.error(f"[OPEN_AI] call_with_tools error: {e}") if stream: def error_generator(): yield { "error": True, "message": str(e), "status_code": 500 } return error_generator() else: return { "error": True, "message": str(e), "status_code": 500 } def _handle_sync_response(self, request_params): """Handle synchronous OpenAI ChatCompletion API response""" try: response = openai.ChatCompletion.create(**request_params) logger.info(f"[OPEN_AI] call_with_tools reply, model={response.get('model')}, " f"total_tokens={response.get('usage', {}).get('total_tokens', 0)}") return response except Exception as e: logger.error(f"[OPEN_AI] sync response error: {e}") raise def _handle_stream_response(self, request_params): """Handle streaming OpenAI ChatCompletion API response""" try: stream = openai.ChatCompletion.create(**request_params) for chunk in stream: yield chunk except Exception as e: logger.error(f"[OPEN_AI] stream response error: {e}") yield { "error": True, "message": str(e), "status_code": 500 }