mirror of
https://github.com/zhayujie/bot-on-anything.git
synced 2026-02-07 00:22:05 +08:00
218 lines
8.2 KiB
Python
218 lines
8.2 KiB
Python
# encoding:utf-8
|
|
|
|
from model.model import Model
|
|
from config import model_conf
|
|
from common import const
|
|
from common import log
|
|
import openai
|
|
import time
|
|
|
|
user_session = dict()
|
|
|
|
# OpenAI对话模型API (可用)
|
|
class OpenAIModel(Model):
|
|
def __init__(self):
|
|
openai.api_key = model_conf(const.OPEN_AI).get('api_key')
|
|
|
|
|
|
def reply(self, query, context=None):
|
|
# acquire reply content
|
|
if not context or not context.get('type') or context.get('type') == 'TEXT':
|
|
log.info("[OPEN_AI] query={}".format(query))
|
|
from_user_id = context['from_user_id']
|
|
if query == '#清除记忆':
|
|
Session.clear_session(from_user_id)
|
|
return '记忆已清除'
|
|
|
|
new_query = Session.build_session_query(query, from_user_id)
|
|
log.debug("[OPEN_AI] session query={}".format(new_query))
|
|
|
|
if context.get('stream'):
|
|
# reply in stream
|
|
return self.reply_text_stream(query, new_query, from_user_id)
|
|
|
|
reply_content = self.reply_text(new_query, from_user_id, 0)
|
|
log.debug("[OPEN_AI] new_query={}, user={}, reply_cont={}".format(new_query, from_user_id, reply_content))
|
|
if reply_content and query:
|
|
Session.save_session(query, reply_content, from_user_id)
|
|
return reply_content
|
|
|
|
elif context.get('type', None) == 'IMAGE_CREATE':
|
|
return self.create_img(query, 0)
|
|
|
|
def reply_text(self, query, user_id, retry_count=0):
|
|
try:
|
|
response = openai.Completion.create(
|
|
model="text-davinci-003", # 对话模型的名称
|
|
prompt=query,
|
|
temperature=0.9, # 值在[0,1]之间,越大表示回复越具有不确定性
|
|
max_tokens=1200, # 回复最大的字符数
|
|
top_p=1,
|
|
frequency_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
|
|
presence_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
|
|
stop=["\n\n\n"]
|
|
)
|
|
res_content = response.choices[0]['text'].strip().replace('<|endoftext|>', '')
|
|
log.info("[OPEN_AI] reply={}".format(res_content))
|
|
return res_content
|
|
except openai.error.RateLimitError as e:
|
|
# rate limit exception
|
|
log.warn(e)
|
|
if retry_count < 1:
|
|
time.sleep(5)
|
|
log.warn("[OPEN_AI] RateLimit exceed, 第{}次重试".format(retry_count+1))
|
|
return self.reply_text(query, user_id, retry_count+1)
|
|
else:
|
|
return "提问太快啦,请休息一下再问我吧"
|
|
except Exception as e:
|
|
# unknown exception
|
|
log.exception(e)
|
|
Session.clear_session(user_id)
|
|
return "请再问我一次吧"
|
|
|
|
|
|
def reply_text_stream(self, query, new_query, user_id, retry_count=0):
|
|
try:
|
|
res = openai.Completion.create(
|
|
model="text-davinci-003", # 对话模型的名称
|
|
prompt=new_query,
|
|
temperature=0.9, # 值在[0,1]之间,越大表示回复越具有不确定性
|
|
max_tokens=1200, # 回复最大的字符数
|
|
top_p=1,
|
|
frequency_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
|
|
presence_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
|
|
stop=["\n\n\n"],
|
|
stream=True
|
|
)
|
|
return self._process_reply_stream(query, res, user_id)
|
|
|
|
except openai.error.RateLimitError as e:
|
|
# rate limit exception
|
|
log.warn(e)
|
|
if retry_count < 1:
|
|
time.sleep(5)
|
|
log.warn("[OPEN_AI] RateLimit exceed, 第{}次重试".format(retry_count+1))
|
|
return self.reply_text(query, user_id, retry_count+1)
|
|
else:
|
|
return "提问太快啦,请休息一下再问我吧"
|
|
except Exception as e:
|
|
# unknown exception
|
|
log.exception(e)
|
|
Session.clear_session(user_id)
|
|
return "请再问我一次吧"
|
|
|
|
|
|
def _process_reply_stream(
|
|
self,
|
|
query: str,
|
|
reply: dict,
|
|
user_id: str
|
|
) -> str:
|
|
full_response = ""
|
|
for response in reply:
|
|
if response.get("choices") is None or len(response["choices"]) == 0:
|
|
raise Exception("OpenAI API returned no choices")
|
|
if response["choices"][0].get("finish_details") is not None:
|
|
break
|
|
if response["choices"][0].get("text") is None:
|
|
raise Exception("OpenAI API returned no text")
|
|
if response["choices"][0]["text"] == "<|endoftext|>":
|
|
break
|
|
yield response["choices"][0]["text"]
|
|
full_response += response["choices"][0]["text"]
|
|
if query and full_response:
|
|
Session.save_session(query, full_response, user_id)
|
|
|
|
|
|
def create_img(self, query, retry_count=0):
|
|
try:
|
|
log.info("[OPEN_AI] image_query={}".format(query))
|
|
response = openai.Image.create(
|
|
prompt=query, #图片描述
|
|
n=1, #每次生成图片的数量
|
|
size="256x256" #图片大小,可选有 256x256, 512x512, 1024x1024
|
|
)
|
|
image_url = response['data'][0]['url']
|
|
log.info("[OPEN_AI] image_url={}".format(image_url))
|
|
return image_url
|
|
except openai.error.RateLimitError as e:
|
|
log.warn(e)
|
|
if retry_count < 1:
|
|
time.sleep(5)
|
|
log.warn("[OPEN_AI] ImgCreate RateLimit exceed, 第{}次重试".format(retry_count+1))
|
|
return self.reply_text(query, retry_count+1)
|
|
else:
|
|
return "提问太快啦,请休息一下再问我吧"
|
|
except Exception as e:
|
|
log.exception(e)
|
|
return None
|
|
|
|
|
|
class Session(object):
|
|
@staticmethod
|
|
def build_session_query(query, user_id):
|
|
'''
|
|
build query with conversation history
|
|
e.g. Q: xxx
|
|
A: xxx
|
|
Q: xxx
|
|
:param query: query content
|
|
:param user_id: from user id
|
|
:return: query content with conversaction
|
|
'''
|
|
prompt = model_conf(const.OPEN_AI).get("character_desc", "")
|
|
if prompt:
|
|
prompt += "<|endoftext|>\n\n\n"
|
|
session = user_session.get(user_id, None)
|
|
if session:
|
|
for conversation in session:
|
|
prompt += "Q: " + conversation["question"] + "\n\n\nA: " + conversation["answer"] + "<|endoftext|>\n"
|
|
prompt += "Q: " + query + "\nA: "
|
|
return prompt
|
|
else:
|
|
return prompt + "Q: " + query + "\nA: "
|
|
|
|
@staticmethod
|
|
def save_session(query, answer, user_id):
|
|
max_tokens = model_conf(const.OPEN_AI).get("conversation_max_tokens")
|
|
if not max_tokens:
|
|
# default 3000
|
|
max_tokens = 1000
|
|
conversation = dict()
|
|
conversation["question"] = query
|
|
conversation["answer"] = answer
|
|
session = user_session.get(user_id)
|
|
log.debug(conversation)
|
|
log.debug(session)
|
|
if session:
|
|
# append conversation
|
|
session.append(conversation)
|
|
else:
|
|
# create session
|
|
queue = list()
|
|
queue.append(conversation)
|
|
user_session[user_id] = queue
|
|
|
|
# discard exceed limit conversation
|
|
Session.discard_exceed_conversation(user_session[user_id], max_tokens)
|
|
|
|
|
|
@staticmethod
|
|
def discard_exceed_conversation(session, max_tokens):
|
|
count = 0
|
|
count_list = list()
|
|
for i in range(len(session)-1, -1, -1):
|
|
# count tokens of conversation list
|
|
history_conv = session[i]
|
|
count += len(history_conv["question"]) + len(history_conv["answer"])
|
|
count_list.append(count)
|
|
|
|
for c in count_list:
|
|
if c > max_tokens:
|
|
# pop first conversation
|
|
session.pop(0)
|
|
|
|
@staticmethod
|
|
def clear_session(user_id):
|
|
user_session[user_id] = []
|