修复gpt3.0流式对话断流,增加模型参数说明

This commit is contained in:
shehuiqiang
2023-03-31 02:14:53 +08:00
parent 5da836e0e8
commit e2d0cbada4
5 changed files with 33 additions and 22 deletions

View File

@@ -50,11 +50,12 @@ class ChatGPTModel(Model):
response = openai.ChatCompletion.create(
model= model_conf(const.OPEN_AI).get("model") or "gpt-3.5-turbo", # 对话模型的名称
messages=query,
temperature=0.9, # 在[0,1]之间,越大表示回复越具有不确定性
top_p=1,
frequency_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
presence_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
)
temperature=model_conf(const.OPEN_AI).get("temperature", 0.75), # 熵值,在[0,1]之间,越大表示选取的候选词越随机回复越具有不确定性建议和top_p参数二选一使用创意性任务越大越好精确性任务越小越好
#max_tokens=4096, # 回复最大的字符数,为输入和输出的总数
#top_p=model_conf(const.OPEN_AI).get("top_p", 0.7),, #候选词列表。0.7 意味着只考虑前70%候选词的标记建议和temperature参数二选一使用
frequency_penalty=model_conf(const.OPEN_AI).get("frequency_penalty", 0.0), # [-2,2]之间,该值越大则越降低模型一行中的重复用词,更倾向于产生不同的内容
presence_penalty=model_conf(const.OPEN_AI).get("presence_penalty", 1.0) # [-2,2]之间,该值越大则越不受输入限制,将鼓励模型生成输入中不存在的新词,更倾向于产生不同的内容
)
reply_content = response.choices[0]['message']['content']
used_token = response['usage']['total_tokens']
log.debug(response)
@@ -94,11 +95,11 @@ class ChatGPTModel(Model):
res = openai.ChatCompletion.create(
model= model_conf(const.OPEN_AI).get("model") or "gpt-3.5-turbo", # 对话模型的名称
messages=new_query,
temperature=0.9, # 在[0,1]之间,越大表示回复越具有不确定性
#max_tokens=4096, # 回复最大的字符数
top_p=1,
frequency_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
presence_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
temperature=model_conf(const.OPEN_AI).get("temperature", 0.75), # 熵值,在[0,1]之间,越大表示选取的候选词越随机回复越具有不确定性建议和top_p参数二选一使用创意性任务越大越好精确性任务越小越好
#max_tokens=4096, # 回复最大的字符数,为输入和输出的总数
#top_p=model_conf(const.OPEN_AI).get("top_p", 0.7),, #候选词列表。0.7 意味着只考虑前70%候选词的标记建议和temperature参数二选一使用
frequency_penalty=model_conf(const.OPEN_AI).get("frequency_penalty", 0.0), # [-2,2]之间,该值越大则越降低模型一行中的重复用词,更倾向于产生不同的内容
presence_penalty=model_conf(const.OPEN_AI).get("presence_penalty", 1.0), # [-2,2]之间,该值越大则越不受输入限制,将鼓励模型生成输入中不存在的新词,更倾向于产生不同的内容
stream=True
)
full_response = ""

View File

@@ -53,11 +53,11 @@ class OpenAIModel(Model):
response = openai.Completion.create(
model="text-davinci-003", # 对话模型的名称
prompt=query,
temperature=0.9, # 在[0,1]之间,越大表示回复越具有不确定性
max_tokens=1200, # 回复最大的字符数
top_p=1,
frequency_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
presence_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
temperature=model_conf(const.OPEN_AI).get("temperature", 0.75), # 熵值,在[0,1]之间,越大表示选取的候选词越随机回复越具有不确定性建议和top_p参数二选一使用创意性任务越大越好精确性任务越小越好
#max_tokens=4096, # 回复最大的字符数,为输入和输出的总数
#top_p=model_conf(const.OPEN_AI).get("top_p", 0.7),, #候选词列表。0.7 意味着只考虑前70%候选词的标记建议和temperature参数二选一使用
frequency_penalty=model_conf(const.OPEN_AI).get("frequency_penalty", 0.0), # [-2,2]之间,该值越大则越降低模型一行中的重复用词,更倾向于产生不同的内容
presence_penalty=model_conf(const.OPEN_AI).get("presence_penalty", 1.0), # [-2,2]之间,该值越大则越不受输入限制,将鼓励模型生成输入中不存在的新词,更倾向于产生不同的内容
stop=["\n\n\n"]
)
res_content = response.choices[0]['text'].strip().replace('<|endoftext|>', '')
@@ -86,11 +86,11 @@ class OpenAIModel(Model):
res = openai.Completion.create(
model= "text-davinci-003", # 对话模型的名称
prompt=new_query,
temperature=0.9, # 在[0,1]之间,越大表示回复越具有不确定性
#max_tokens=4096, # 回复最大的字符数
top_p=1,
frequency_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
presence_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
temperature=model_conf(const.OPEN_AI).get("temperature", 0.75), # 熵值,在[0,1]之间,越大表示选取的候选词越随机回复越具有不确定性建议和top_p参数二选一使用创意性任务越大越好精确性任务越小越好
max_tokens=model_conf(const.OPEN_AI).get("conversation_max_tokens", 3000), # 回复最大的字符数,为输入和输出的总数,davinci的流式对话需要启用这属性不然对话会断流
#top_p=model_conf(const.OPEN_AI).get("top_p", 0.7),, #候选词列表。0.7 意味着只考虑前70%候选词的标记建议和temperature参数二选一使用
frequency_penalty=model_conf(const.OPEN_AI).get("frequency_penalty", 0.0), # [-2,2]之间,该值越大则越降低模型一行中的重复用词,更倾向于产生不同的内容
presence_penalty=model_conf(const.OPEN_AI).get("presence_penalty", 1.0), # [-2,2]之间,该值越大则越不受输入限制,将鼓励模型生成输入中不存在的新词,更倾向于产生不同的内容
stream=True
)
full_response = ""