mirror of
https://github.com/zhayujie/bot-on-anything.git
synced 2026-01-19 09:41:07 +08:00
init: add wechat and wechat_mp channel
This commit is contained in:
13
model/model.py
Normal file
13
model/model.py
Normal file
@@ -0,0 +1,13 @@
|
||||
"""
|
||||
Auto-replay chat robot abstract class
|
||||
"""
|
||||
|
||||
|
||||
class Model(object):
|
||||
def reply(self, query, context=None):
|
||||
"""
|
||||
model auto-reply content
|
||||
:param req: received message
|
||||
:return: reply content
|
||||
"""
|
||||
raise NotImplementedError
|
||||
19
model/model_factory.py
Normal file
19
model/model_factory.py
Normal file
@@ -0,0 +1,19 @@
|
||||
"""
|
||||
channel factory
|
||||
"""
|
||||
|
||||
from common import const
|
||||
|
||||
def create_bot(model_type):
|
||||
"""
|
||||
create a channel instance
|
||||
:param channel_type: channel type code
|
||||
:return: channel instance
|
||||
"""
|
||||
|
||||
if model_type == const.OPEN_AI:
|
||||
# OpenAI 官方对话模型API
|
||||
from model.openai.open_ai_model import OpenAIModel
|
||||
return OpenAIModel()
|
||||
|
||||
raise RuntimeError
|
||||
BIN
model/openai/.DS_Store
vendored
Normal file
BIN
model/openai/.DS_Store
vendored
Normal file
Binary file not shown.
160
model/openai/open_ai_model.py
Normal file
160
model/openai/open_ai_model.py
Normal file
@@ -0,0 +1,160 @@
|
||||
# encoding:utf-8
|
||||
|
||||
from model.model import Model
|
||||
from config import fetch
|
||||
from common import const
|
||||
from common.log import logger
|
||||
import openai
|
||||
import time
|
||||
|
||||
user_session = dict()
|
||||
|
||||
# OpenAI对话模型API (可用)
|
||||
class OpenAIModel(Model):
|
||||
def __init__(self):
|
||||
openai.api_key = fetch(const.OPEN_AI).get('api_key')
|
||||
|
||||
|
||||
def reply(self, query, context=None):
|
||||
# acquire reply content
|
||||
if not context or not context.get('type') or context.get('type') == 'TEXT':
|
||||
logger.info("[OPEN_AI] query={}".format(query))
|
||||
from_user_id = context['from_user_id']
|
||||
if query == '#清除记忆':
|
||||
Session.clear_session(from_user_id)
|
||||
return '记忆已清除'
|
||||
|
||||
new_query = Session.build_session_query(query, from_user_id)
|
||||
logger.debug("[OPEN_AI] session query={}".format(new_query))
|
||||
|
||||
reply_content = self.reply_text(new_query, from_user_id, 0)
|
||||
logger.debug("[OPEN_AI] new_query={}, user={}, reply_cont={}".format(new_query, from_user_id, reply_content))
|
||||
if reply_content and query:
|
||||
Session.save_session(query, reply_content, from_user_id)
|
||||
return reply_content
|
||||
|
||||
elif context.get('type', None) == 'IMAGE_CREATE':
|
||||
return self.create_img(query, 0)
|
||||
|
||||
def reply_text(self, query, user_id, retry_count=0):
|
||||
try:
|
||||
response = openai.Completion.create(
|
||||
model="text-davinci-003", # 对话模型的名称
|
||||
prompt=query,
|
||||
temperature=0.9, # 值在[0,1]之间,越大表示回复越具有不确定性
|
||||
max_tokens=1200, # 回复最大的字符数
|
||||
top_p=1,
|
||||
frequency_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
|
||||
presence_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
|
||||
stop=["\n\n\n"]
|
||||
)
|
||||
res_content = response.choices[0]['text'].strip().replace('<|endoftext|>', '')
|
||||
logger.info("[OPEN_AI] reply={}".format(res_content))
|
||||
return res_content
|
||||
except openai.error.RateLimitError as e:
|
||||
# rate limit exception
|
||||
logger.warn(e)
|
||||
if retry_count < 1:
|
||||
time.sleep(5)
|
||||
logger.warn("[OPEN_AI] RateLimit exceed, 第{}次重试".format(retry_count+1))
|
||||
return self.reply_text(query, user_id, retry_count+1)
|
||||
else:
|
||||
return "提问太快啦,请休息一下再问我吧"
|
||||
except Exception as e:
|
||||
# unknown exception
|
||||
logger.exception(e)
|
||||
Session.clear_session(user_id)
|
||||
return "请再问我一次吧"
|
||||
|
||||
|
||||
def create_img(self, query, retry_count=0):
|
||||
try:
|
||||
logger.info("[OPEN_AI] image_query={}".format(query))
|
||||
response = openai.Image.create(
|
||||
prompt=query, #图片描述
|
||||
n=1, #每次生成图片的数量
|
||||
size="256x256" #图片大小,可选有 256x256, 512x512, 1024x1024
|
||||
)
|
||||
image_url = response['data'][0]['url']
|
||||
logger.info("[OPEN_AI] image_url={}".format(image_url))
|
||||
return image_url
|
||||
except openai.error.RateLimitError as e:
|
||||
logger.warn(e)
|
||||
if retry_count < 1:
|
||||
time.sleep(5)
|
||||
logger.warn("[OPEN_AI] ImgCreate RateLimit exceed, 第{}次重试".format(retry_count+1))
|
||||
return self.reply_text(query, retry_count+1)
|
||||
else:
|
||||
return "提问太快啦,请休息一下再问我吧"
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
return None
|
||||
|
||||
|
||||
class Session(object):
|
||||
@staticmethod
|
||||
def build_session_query(query, user_id):
|
||||
'''
|
||||
build query with conversation history
|
||||
e.g. Q: xxx
|
||||
A: xxx
|
||||
Q: xxx
|
||||
:param query: query content
|
||||
:param user_id: from user id
|
||||
:return: query content with conversaction
|
||||
'''
|
||||
prompt = fetch(const.OPEN_AI).get("character_desc", "")
|
||||
if prompt:
|
||||
prompt += "<|endoftext|>\n\n\n"
|
||||
session = user_session.get(user_id, None)
|
||||
if session:
|
||||
for conversation in session:
|
||||
prompt += "Q: " + conversation["question"] + "\n\n\nA: " + conversation["answer"] + "<|endoftext|>\n"
|
||||
prompt += "Q: " + query + "\nA: "
|
||||
return prompt
|
||||
else:
|
||||
return prompt + "Q: " + query + "\nA: "
|
||||
|
||||
@staticmethod
|
||||
def save_session(query, answer, user_id):
|
||||
max_tokens = fetch(const.OPEN_AI).get("conversation_max_tokens")
|
||||
if not max_tokens:
|
||||
# default 3000
|
||||
max_tokens = 1000
|
||||
conversation = dict()
|
||||
conversation["question"] = query
|
||||
conversation["answer"] = answer
|
||||
session = user_session.get(user_id)
|
||||
logger.debug(conversation)
|
||||
logger.debug(session)
|
||||
if session:
|
||||
# append conversation
|
||||
session.append(conversation)
|
||||
else:
|
||||
# create session
|
||||
queue = list()
|
||||
queue.append(conversation)
|
||||
user_session[user_id] = queue
|
||||
|
||||
# discard exceed limit conversation
|
||||
Session.discard_exceed_conversation(user_session[user_id], max_tokens)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def discard_exceed_conversation(session, max_tokens):
|
||||
count = 0
|
||||
count_list = list()
|
||||
for i in range(len(session)-1, -1, -1):
|
||||
# count tokens of conversation list
|
||||
history_conv = session[i]
|
||||
count += len(history_conv["question"]) + len(history_conv["answer"])
|
||||
count_list.append(count)
|
||||
|
||||
for c in count_list:
|
||||
if c > max_tokens:
|
||||
# pop first conversation
|
||||
session.pop(0)
|
||||
|
||||
@staticmethod
|
||||
def clear_session(user_id):
|
||||
user_session[user_id] = []
|
||||
Reference in New Issue
Block a user