Files
Snap-Solver/app.py

606 lines
22 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from flask import Flask, jsonify, render_template, request, send_from_directory
from flask_socketio import SocketIO
import pyautogui
import base64
from io import BytesIO
import socket
from threading import Thread
import pystray
from PIL import Image, ImageDraw
import pyperclip
from models import ModelFactory
import time
import os
import json
app = Flask(__name__)
socketio = SocketIO(app, cors_allowed_origins="*", ping_timeout=30, ping_interval=5, max_http_buffer_size=50 * 1024 * 1024)
# 添加配置文件路径
CONFIG_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config')
# 初始化模型工厂
ModelFactory.initialize()
def get_local_ip():
try:
# Get local IP address
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(("8.8.8.8", 80))
ip = s.getsockname()[0]
s.close()
return ip
except Exception:
return "127.0.0.1"
def create_tray_icon():
# Create a simple icon (a colored circle)
icon_size = 64
icon_image = Image.new('RGB', (icon_size, icon_size), color='white')
draw = ImageDraw.Draw(icon_image)
draw.ellipse([4, 4, icon_size-4, icon_size-4], fill='#2196F3') # Using the primary color from our CSS
# Get server URL
ip_address = get_local_ip()
server_url = f"http://{ip_address}:5000"
# Create menu
menu = pystray.Menu(
pystray.MenuItem(server_url, lambda icon, item: None, enabled=False),
pystray.MenuItem("Exit", lambda icon, item: icon.stop())
)
# Create icon
icon = pystray.Icon(
"SnapSolver",
icon_image,
"Snap Solver",
menu
)
return icon
@app.route('/')
def index():
local_ip = get_local_ip()
return render_template('index.html', local_ip=local_ip)
@socketio.on('connect')
def handle_connect():
print('Client connected')
@socketio.on('disconnect')
def handle_disconnect():
print('Client disconnected')
def stream_model_response(response_generator, sid, model_name=None):
"""Stream model responses to the client"""
try:
print("Starting response streaming...")
# 判断模型是否为推理模型
is_reasoning = model_name and ModelFactory.is_reasoning(model_name)
if is_reasoning:
print(f"使用推理模型 {model_name},将显示思考过程")
# 初始化:发送开始状态
socketio.emit('claude_response', {
'status': 'started',
'content': '',
'is_reasoning': is_reasoning
}, room=sid)
print("Sent initial status to client")
# 维护服务端缓冲区以累积完整内容
response_buffer = ""
thinking_buffer = ""
# 上次发送的时间戳,用于控制发送频率
last_emit_time = time.time()
# 流式处理响应
for response in response_generator:
# 处理Mathpix响应
if isinstance(response.get('content', ''), str) and 'mathpix' in response.get('model', ''):
socketio.emit('text_extracted', {
'content': response['content']
}, room=sid)
continue
# 获取状态和内容
status = response.get('status', '')
content = response.get('content', '')
# 根据不同的状态进行处理
if status == 'thinking':
# 仅对推理模型处理思考过程
if is_reasoning:
# 直接使用模型提供的完整思考内容
thinking_buffer = content
# 控制发送频率至少间隔0.3秒
current_time = time.time()
if current_time - last_emit_time >= 0.3:
socketio.emit('claude_response', {
'status': 'thinking',
'content': thinking_buffer,
'is_reasoning': True
}, room=sid)
last_emit_time = current_time
elif status == 'thinking_complete':
# 仅对推理模型处理思考过程
if is_reasoning:
# 直接使用完整的思考内容
thinking_buffer = content
print(f"Thinking complete, total length: {len(thinking_buffer)} chars")
socketio.emit('claude_response', {
'status': 'thinking_complete',
'content': thinking_buffer,
'is_reasoning': True
}, room=sid)
elif status == 'streaming':
# 直接使用模型提供的完整内容
response_buffer = content
# 控制发送频率至少间隔0.3秒
current_time = time.time()
if current_time - last_emit_time >= 0.3:
socketio.emit('claude_response', {
'status': 'streaming',
'content': response_buffer,
'is_reasoning': is_reasoning
}, room=sid)
last_emit_time = current_time
elif status == 'completed':
# 确保发送最终完整内容
socketio.emit('claude_response', {
'status': 'completed',
'content': content or response_buffer,
'is_reasoning': is_reasoning
}, room=sid)
print("Response completed")
elif status == 'error':
# 错误状态直接转发
response['is_reasoning'] = is_reasoning
socketio.emit('claude_response', response, room=sid)
print(f"Error: {response.get('error', 'Unknown error')}")
# 其他状态直接转发
else:
response['is_reasoning'] = is_reasoning
socketio.emit('claude_response', response, room=sid)
except Exception as e:
error_msg = f"Streaming error: {str(e)}"
print(error_msg)
socketio.emit('claude_response', {
'status': 'error',
'error': error_msg,
'is_reasoning': model_name and ModelFactory.is_reasoning(model_name)
}, room=sid)
@socketio.on('request_screenshot')
def handle_screenshot_request():
try:
# Capture the screen
screenshot = pyautogui.screenshot()
# Convert the image to base64 string
buffered = BytesIO()
screenshot.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Emit the screenshot back to the client
socketio.emit('screenshot_response', {
'success': True,
'image': img_str
})
except Exception as e:
socketio.emit('screenshot_response', {
'success': False,
'error': str(e)
})
@socketio.on('extract_text')
def handle_text_extraction(data):
try:
print("Starting text extraction...")
# Validate input data
if not data or not isinstance(data, dict):
raise ValueError("Invalid request data")
if 'image' not in data:
raise ValueError("No image data provided")
image_data = data['image']
if not isinstance(image_data, str):
raise ValueError("Invalid image data format")
# 检查图像大小,避免处理过大的图像导致断开连接
image_size_bytes = len(image_data) * 3 / 4 # 估算base64的实际大小
if image_size_bytes > 10 * 1024 * 1024: # 10MB
raise ValueError("Image too large, please crop to a smaller area")
settings = data.get('settings', {})
if not isinstance(settings, dict):
raise ValueError("Invalid settings format")
mathpix_key = settings.get('mathpixApiKey')
if not mathpix_key:
raise ValueError("Mathpix API key is required")
# 先回复客户端,确认已收到请求,防止超时断开
# 注意这里不能使用return否则后续代码不会执行
socketio.emit('request_acknowledged', {
'status': 'received',
'message': 'Image received, text extraction in progress'
}, room=request.sid)
try:
app_id, app_key = mathpix_key.split(':')
if not app_id.strip() or not app_key.strip():
raise ValueError()
except ValueError:
raise ValueError("Invalid Mathpix API key format. Expected format: 'app_id:app_key'")
print("Creating Mathpix model instance...")
# 只传递必需的参数ModelFactory.create_model会处理不同模型类型
model = ModelFactory.create_model(
model_name='mathpix',
api_key=mathpix_key
)
print("Starting text extraction...")
# 使用新的extract_full_text方法直接提取完整文本
extracted_text = model.extract_full_text(image_data)
# 直接返回文本结果
socketio.emit('text_extracted', {
'content': extracted_text
}, room=request.sid)
except ValueError as e:
error_msg = str(e)
print(f"Validation error: {error_msg}")
socketio.emit('text_extracted', {
'error': error_msg
}, room=request.sid)
except Exception as e:
error_msg = f"Text extraction error: {str(e)}"
print(f"Unexpected error: {error_msg}")
print(f"Error details: {type(e).__name__}")
socketio.emit('text_extracted', {
'error': error_msg
}, room=request.sid)
@socketio.on('analyze_text')
def handle_analyze_text(data):
try:
text = data.get('text')
settings = data.get('settings', {})
sid = request.sid
# 从前端传递的设置中获取模型能力信息
model_capabilities = settings.get('modelCapabilities', {})
is_reasoning = model_capabilities.get('isReasoning', False)
# 获取模型名称、提供商和API密钥
model_name = settings.get('model', 'claude-3-7-sonnet-20250219')
model_provider = settings.get('modelInfo', {}).get('provider', '').lower()
print(f"Selected model: {model_name}, Provider: {model_provider}")
# 获取API密钥 - 同时支持apiKeys和api_keys两种格式
api_keys = settings.get('apiKeys', {}) or settings.get('api_keys', {})
print("Debug - 接收到的API密钥(文本分析):", api_keys)
# 根据提供商或模型名称确定使用哪个API密钥ID
api_key_id = None
# 首先尝试通过provider匹配
if model_provider == 'anthropic':
api_key_id = "AnthropicApiKey"
elif model_provider == 'openai':
api_key_id = "OpenaiApiKey"
elif model_provider == 'deepseek':
api_key_id = "DeepseekApiKey"
else:
# 如果provider不可用尝试通过模型名称匹配
if "claude" in model_name.lower():
api_key_id = "AnthropicApiKey"
elif any(keyword in model_name.lower() for keyword in ["gpt", "openai"]):
api_key_id = "OpenaiApiKey"
elif "deepseek" in model_name.lower():
api_key_id = "DeepseekApiKey"
api_key = api_keys.get(api_key_id)
print(f"Debug - 使用API密钥ID: {api_key_id}, 密钥值是否存在: {bool(api_key)}")
language = settings.get('language', '中文')
# Validate required settings
if not api_key:
raise ValueError(f"API key is required for the selected model (keyId: {api_key_id})")
# Log with model name for better debugging
print(f"Using API key for {model_name}: {api_key[:6] if api_key else 'None'}...")
print("Selected model:", model_name)
print("Response language:", language)
print(f"Model features: Reasoning={is_reasoning}")
# Configure proxy settings if enabled
proxies = None
if settings.get('proxyEnabled', False):
proxy_host = settings.get('proxyHost', '127.0.0.1')
proxy_port = settings.get('proxyPort', '4780')
proxies = {
'http': f'http://{proxy_host}:{proxy_port}',
'https': f'http://{proxy_host}:{proxy_port}'
}
try:
# Create model instance using factory - 推理模型不使用temperature参数
model = ModelFactory.create_model(
model_name=model_name,
api_key=api_key,
temperature=None if is_reasoning else float(settings.get('temperature', 0.7)),
system_prompt=settings.get('systemPrompt'),
language=language
)
# Start streaming in a separate thread
Thread(
target=stream_model_response,
args=(model.analyze_text(text, proxies), sid, model_name)
).start()
except Exception as e:
socketio.emit('claude_response', {
'status': 'error',
'error': f'API error: {str(e)}'
}, room=sid)
except Exception as e:
print(f"Analysis error: {str(e)}")
socketio.emit('claude_response', {
'status': 'error',
'error': f'Analysis error: {str(e)}'
}, room=request.sid)
@socketio.on('analyze_image')
def handle_analyze_image(data):
try:
print("Starting image analysis...")
base64_data = data.get('image', '')
settings = data.get('settings', {})
# 首先从前端传递的设置中获取模型能力信息
model_capabilities = settings.get('modelCapabilities', {})
is_multimodal = model_capabilities.get('supportsMultimodal', False)
is_reasoning = model_capabilities.get('isReasoning', False)
# 获取模型名称、提供商和API密钥
model_name = settings.get('model', 'claude-3-7-sonnet-20250219')
model_provider = settings.get('modelInfo', {}).get('provider', '').lower()
print(f"Selected model: {model_name}, Provider: {model_provider}")
# 获取API密钥 - 同时支持apiKeys和api_keys两种格式
api_keys = settings.get('apiKeys', {}) or settings.get('api_keys', {})
print("Debug - 接收到的API密钥:", api_keys)
# 根据提供商或模型名称确定使用哪个API密钥ID
api_key_id = None
# 首先尝试通过provider匹配
if model_provider == 'anthropic':
api_key_id = "AnthropicApiKey"
elif model_provider == 'openai':
api_key_id = "OpenaiApiKey"
elif model_provider == 'deepseek':
api_key_id = "DeepseekApiKey"
else:
# 如果provider不可用尝试通过模型名称匹配
if "claude" in model_name.lower():
api_key_id = "AnthropicApiKey"
elif any(keyword in model_name.lower() for keyword in ["gpt", "openai"]):
api_key_id = "OpenaiApiKey"
elif "deepseek" in model_name.lower():
api_key_id = "DeepseekApiKey"
api_key = api_keys.get(api_key_id)
print(f"Debug - 使用API密钥ID: {api_key_id}, 密钥值是否存在: {bool(api_key)}")
language = settings.get('language', '中文')
# Validate required params
if not base64_data:
raise ValueError("No image data provided")
if not api_key:
raise ValueError(f"API key is required for the selected model (keyId: {api_key_id})")
# 记录模型信息以便调试
print("Selected model:", model_name)
print("Response language:", language)
print(f"Model capabilities: Multimodal={is_multimodal}, Reasoning={is_reasoning}")
# Configure proxy settings if enabled
proxies = None
if settings.get('proxyEnabled', False):
proxy_host = settings.get('proxyHost', '127.0.0.1')
proxy_port = settings.get('proxyPort', '4780')
proxies = {
'http': f'http://{proxy_host}:{proxy_port}',
'https': f'http://{proxy_host}:{proxy_port}'
}
# 先回复客户端,确认已收到请求,防止超时断开
socketio.emit('request_acknowledged', {
'status': 'received',
'message': 'Image received, analysis in progress'
}, room=request.sid)
# 如果不是多模态模型,需要先提取文本
extracted_text = None
if not is_multimodal:
mathpix_key = settings.get('mathpixApiKey')
if not mathpix_key:
raise ValueError("非多模态模型需要Mathpix API Key进行文本提取")
print("非多模态模型,需要先提取文本...")
mathpix_model = ModelFactory.create_model('mathpix', mathpix_key)
# 这里假设MathpixModel有一个extract_full_text方法
# 如果没有,需要实现或调用其他方法来提取文本
try:
extracted_text = mathpix_model.extract_full_text(base64_data)
print("文本提取成功,长度:", len(extracted_text))
# 提示用户文本提取已完成
socketio.emit('text_extracted', {
'status': 'success',
'message': '图像文本提取成功,正在分析...',
'for_analysis': True
}, room=request.sid)
except Exception as e:
raise ValueError(f"文本提取失败: {str(e)}")
try:
# Create model instance using factory - 推理模型不使用temperature参数
model = ModelFactory.create_model(
model_name=model_name,
api_key=api_key,
temperature=None if is_reasoning else float(settings.get('temperature', 0.7)),
system_prompt=settings.get('systemPrompt'),
language=language
)
# Start streaming in a separate thread
if not is_multimodal and extracted_text:
# 对于非多模态模型,使用提取的文本
Thread(
target=stream_model_response,
args=(model.analyze_text(extracted_text, proxies), request.sid, model_name)
).start()
else:
# 对于多模态模型,直接使用图像
Thread(
target=stream_model_response,
args=(model.analyze_image(base64_data, proxies), request.sid, model_name)
).start()
except Exception as e:
socketio.emit('claude_response', {
'status': 'error',
'error': f'API error: {str(e)}'
}, room=request.sid)
except Exception as e:
print(f"Analysis error: {str(e)}")
socketio.emit('claude_response', {
'status': 'error',
'error': f'Analysis error: {str(e)}'
}, room=request.sid)
@socketio.on('capture_screenshot')
def handle_capture_screenshot(data):
try:
# Capture the screen
screenshot = pyautogui.screenshot()
# Convert the image to base64 string
buffered = BytesIO()
screenshot.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Emit the screenshot back to the client
socketio.emit('screenshot_complete', {
'success': True,
'image': img_str
}, room=request.sid)
except Exception as e:
error_msg = f"Screenshot error: {str(e)}"
print(f"Error capturing screenshot: {error_msg}")
socketio.emit('screenshot_complete', {
'success': False,
'error': error_msg
}, room=request.sid)
def run_tray():
icon = create_tray_icon()
icon.run()
# 添加配置文件路由
@app.route('/config/<path:filename>')
def serve_config(filename):
return send_from_directory(CONFIG_DIR, filename)
# 添加用于获取所有模型信息的API
@app.route('/api/models', methods=['GET'])
def get_models():
"""返回可用的模型列表"""
models = ModelFactory.get_available_models()
return jsonify(models)
def load_model_config():
"""加载模型配置信息"""
try:
config_path = os.path.join(CONFIG_DIR, 'models.json')
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
return config
except Exception as e:
print(f"加载模型配置失败: {e}")
return {
"providers": {},
"models": {}
}
# 替换 before_first_request 装饰器
def init_model_config():
"""初始化模型配置"""
try:
model_config = load_model_config()
# 更新ModelFactory的模型信息
if hasattr(ModelFactory, 'update_model_capabilities'):
ModelFactory.update_model_capabilities(model_config)
print("已加载模型配置")
except Exception as e:
print(f"初始化模型配置失败: {e}")
# 在请求处理前注册初始化函数
@app.before_request
def before_request_handler():
# 使用全局变量跟踪是否已初始化
if not getattr(app, '_model_config_initialized', False):
init_model_config()
app._model_config_initialized = True
if __name__ == '__main__':
local_ip = get_local_ip()
print(f"Local IP Address: {local_ip}")
print(f"Connect from your mobile device using: {local_ip}:5000")
# 加载模型配置
model_config = load_model_config()
if hasattr(ModelFactory, 'update_model_capabilities'):
ModelFactory.update_model_capabilities(model_config)
print("已加载模型配置信息")
# Run system tray icon in a separate thread
tray_thread = Thread(target=run_tray)
tray_thread.daemon = True
tray_thread.start()
# Run Flask in the main thread without debug mode
socketio.run(app, host='0.0.0.0', port=5000, allow_unsafe_werkzeug=True)