Files
Snap-Solver/models/gpt4o.py
2025-02-04 22:09:58 +08:00

189 lines
7.0 KiB
Python

import os
from typing import Generator, Dict, Optional
from openai import OpenAI
from .base import BaseModel
class GPT4oModel(BaseModel):
def get_default_system_prompt(self) -> str:
return """You are an expert at analyzing questions and providing detailed solutions. When presented with an image of a question:
1. First read and understand the question carefully
2. Break down the key components of the question
3. Provide a clear, step-by-step solution
4. If relevant, explain any concepts or theories involved
5. If there are multiple approaches, explain the most efficient one first"""
def get_model_identifier(self) -> str:
return "gpt-4o-2024-11-20"
def analyze_text(self, text: str, proxies: dict = None) -> Generator[dict, None, None]:
"""Stream GPT-4o's response for text analysis"""
try:
# Initial status
yield {"status": "started", "content": ""}
# Save original environment state
original_env = {
'http_proxy': os.environ.get('http_proxy'),
'https_proxy': os.environ.get('https_proxy')
}
try:
# Set proxy environment variables if provided
if proxies:
if 'http' in proxies:
os.environ['http_proxy'] = proxies['http']
if 'https' in proxies:
os.environ['https_proxy'] = proxies['https']
# Create OpenAI client
client = OpenAI(
api_key=self.api_key,
base_url="https://api.openai.com/v1" # Replace with actual GPT-4o API endpoint
)
messages = [
{
"role": "system",
"content": self.system_prompt
},
{
"role": "user",
"content": text
}
]
response = client.chat.completions.create(
model=self.get_model_identifier(),
messages=messages,
temperature=self.temperature,
stream=True,
max_tokens=4000
)
for chunk in response:
if hasattr(chunk.choices[0].delta, 'content'):
content = chunk.choices[0].delta.content
if content:
yield {
"status": "streaming",
"content": content
}
# Send completion status
yield {
"status": "completed",
"content": ""
}
finally:
# Restore original environment state
for key, value in original_env.items():
if value is None:
os.environ.pop(key, None)
else:
os.environ[key] = value
except Exception as e:
error_msg = str(e)
if "invalid_api_key" in error_msg.lower():
error_msg = "Invalid API key provided"
elif "rate_limit" in error_msg.lower():
error_msg = "Rate limit exceeded. Please try again later."
yield {
"status": "error",
"error": f"GPT-4o API error: {error_msg}"
}
def analyze_image(self, image_data: str, proxies: dict = None) -> Generator[dict, None, None]:
"""Stream GPT-4o's response for image analysis"""
try:
# Initial status
yield {"status": "started", "content": ""}
# Save original environment state
original_env = {
'http_proxy': os.environ.get('http_proxy'),
'https_proxy': os.environ.get('https_proxy')
}
try:
# Set proxy environment variables if provided
if proxies:
if 'http' in proxies:
os.environ['http_proxy'] = proxies['http']
if 'https' in proxies:
os.environ['https_proxy'] = proxies['https']
# Create OpenAI client
client = OpenAI(
api_key=self.api_key,
base_url="https://api.openai.com/v1" # Replace with actual GPT-4o API endpoint
)
messages = [
{
"role": "system",
"content": self.system_prompt
},
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{image_data}",
"detail": "high"
}
},
{
"type": "text",
"text": "Please analyze this question and provide a detailed solution. If you see multiple questions, focus on solving them one at a time."
}
]
}
]
response = client.chat.completions.create(
model=self.get_model_identifier(),
messages=messages,
temperature=self.temperature,
stream=True,
max_tokens=4000
)
for chunk in response:
if hasattr(chunk.choices[0].delta, 'content'):
content = chunk.choices[0].delta.content
if content:
yield {
"status": "streaming",
"content": content
}
# Send completion status
yield {
"status": "completed",
"content": ""
}
finally:
# Restore original environment state
for key, value in original_env.items():
if value is None:
os.environ.pop(key, None)
else:
os.environ[key] = value
except Exception as e:
error_msg = str(e)
if "invalid_api_key" in error_msg.lower():
error_msg = "Invalid API key provided"
elif "rate_limit" in error_msg.lower():
error_msg = "Rate limit exceeded. Please try again later."
yield {
"status": "error",
"error": f"GPT-4o API error: {error_msg}"
}