Files
Snap-Solver/app.py

1127 lines
41 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from flask import Flask, jsonify, render_template, request, send_from_directory
from flask_socketio import SocketIO
import pyautogui
import base64
from io import BytesIO
import socket
from threading import Thread, Event
import threading
from PIL import Image
import pyperclip
from models import ModelFactory
import time
import os
import json
import traceback
import requests
from datetime import datetime
import sys
app = Flask(__name__)
socketio = SocketIO(
app,
cors_allowed_origins="*",
ping_timeout=30,
ping_interval=5,
max_http_buffer_size=50 * 1024 * 1024,
async_mode='threading', # 使用threading模式提高兼容性
engineio_logger=True, # 启用引擎日志,便于调试
logger=True # 启用Socket.IO日志
)
# 常量定义
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
CONFIG_DIR = os.path.join(CURRENT_DIR, 'config')
STATIC_DIR = os.path.join(CURRENT_DIR, 'static')
# 确保配置目录存在
os.makedirs(CONFIG_DIR, exist_ok=True)
# 密钥和其他配置文件路径
API_KEYS_FILE = os.path.join(CONFIG_DIR, 'api_keys.json')
API_BASE_URLS_FILE = os.path.join(CONFIG_DIR, 'api_base_urls.json')
VERSION_FILE = os.path.join(CONFIG_DIR, 'version.json')
UPDATE_INFO_FILE = os.path.join(CONFIG_DIR, 'update_info.json')
PROMPT_FILE = os.path.join(CONFIG_DIR, 'prompts.json') # 新增提示词配置文件路径
PROXY_API_FILE = os.path.join(CONFIG_DIR, 'proxy_api.json') # 新增中转API配置文件路径
DEFAULT_API_BASE_URLS = {
"AnthropicApiBaseUrl": "",
"OpenaiApiBaseUrl": "",
"DeepseekApiBaseUrl": "",
"AlibabaApiBaseUrl": "",
"GoogleApiBaseUrl": "",
"DoubaoApiBaseUrl": ""
}
def ensure_api_base_urls_file():
"""确保 API 基础 URL 配置文件存在并包含所有占位符"""
try:
file_exists = os.path.exists(API_BASE_URLS_FILE)
base_urls = {}
if file_exists:
try:
with open(API_BASE_URLS_FILE, 'r', encoding='utf-8') as f:
loaded = json.load(f)
if isinstance(loaded, dict):
base_urls = loaded
else:
file_exists = False
except json.JSONDecodeError:
file_exists = False
missing_key_added = False
for key, default_value in DEFAULT_API_BASE_URLS.items():
if key not in base_urls:
base_urls[key] = default_value
missing_key_added = True
if not file_exists or missing_key_added or not base_urls:
with open(API_BASE_URLS_FILE, 'w', encoding='utf-8') as f:
json.dump(base_urls or DEFAULT_API_BASE_URLS, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"初始化API基础URL配置失败: {e}")
# 确保API基础URL文件已经生成
ensure_api_base_urls_file()
# 跟踪用户生成任务的字典
generation_tasks = {}
# 初始化模型工厂
ModelFactory.initialize()
def get_local_ip():
try:
# Get local IP address
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(("8.8.8.8", 80))
ip = s.getsockname()[0]
s.close()
return ip
except Exception:
return "127.0.0.1"
@app.route('/')
def index():
local_ip = get_local_ip()
# 检查更新
try:
update_info = check_for_updates()
except:
update_info = {'has_update': False}
return render_template('index.html', local_ip=local_ip, update_info=update_info)
@socketio.on('connect')
def handle_connect():
print('Client connected')
@socketio.on('disconnect')
def handle_disconnect():
print('Client disconnected')
def create_model_instance(model_id, settings, is_reasoning=False):
"""创建模型实例"""
# 提取API密钥
api_keys = settings.get('apiKeys', {})
# 确定需要哪个API密钥
api_key_id = None
# 特殊情况o3-mini使用OpenAI API密钥
if model_id.lower() == "o3-mini":
api_key_id = "OpenaiApiKey"
# 其他Anthropic/Claude模型
elif "claude" in model_id.lower() or "anthropic" in model_id.lower():
api_key_id = "AnthropicApiKey"
elif any(keyword in model_id.lower() for keyword in ["gpt", "openai"]):
api_key_id = "OpenaiApiKey"
elif "deepseek" in model_id.lower():
api_key_id = "DeepseekApiKey"
elif "qvq" in model_id.lower() or "alibaba" in model_id.lower() or "qwen" in model_id.lower():
api_key_id = "AlibabaApiKey"
elif "gemini" in model_id.lower() or "google" in model_id.lower():
api_key_id = "GoogleApiKey"
elif "doubao" in model_id.lower():
api_key_id = "DoubaoApiKey"
# 首先尝试从本地配置获取API密钥
api_key = get_api_key(api_key_id)
# 如果本地没有配置,尝试使用前端传递的密钥(向后兼容)
if not api_key:
api_key = api_keys.get(api_key_id)
if not api_key:
raise ValueError(f"API key is required for the selected model (keyId: {api_key_id})")
# 获取maxTokens参数默认为8192
max_tokens = int(settings.get('maxTokens', 8192))
# 检查是否启用中转API
proxy_api_config = load_proxy_api()
base_url = None
if proxy_api_config.get('enabled', False):
# 根据模型类型选择对应的中转API
if "claude" in model_id.lower() or "anthropic" in model_id.lower():
base_url = proxy_api_config.get('apis', {}).get('anthropic', '')
elif any(keyword in model_id.lower() for keyword in ["gpt", "openai"]):
base_url = proxy_api_config.get('apis', {}).get('openai', '')
elif "deepseek" in model_id.lower():
base_url = proxy_api_config.get('apis', {}).get('deepseek', '')
elif "qvq" in model_id.lower() or "alibaba" in model_id.lower() or "qwen" in model_id.lower():
base_url = proxy_api_config.get('apis', {}).get('alibaba', '')
elif "gemini" in model_id.lower() or "google" in model_id.lower():
base_url = proxy_api_config.get('apis', {}).get('google', '')
# 从前端设置获取自定义API基础URL (apiBaseUrls)
api_base_urls = settings.get('apiBaseUrls', {})
if api_base_urls:
# 根据模型类型选择对应的自定义API基础URL
if "claude" in model_id.lower() or "anthropic" in model_id.lower():
custom_base_url = api_base_urls.get('anthropic')
if custom_base_url:
base_url = custom_base_url
elif any(keyword in model_id.lower() for keyword in ["gpt", "openai"]):
custom_base_url = api_base_urls.get('openai')
if custom_base_url:
base_url = custom_base_url
elif "deepseek" in model_id.lower():
custom_base_url = api_base_urls.get('deepseek')
if custom_base_url:
base_url = custom_base_url
elif "qvq" in model_id.lower() or "alibaba" in model_id.lower() or "qwen" in model_id.lower():
custom_base_url = api_base_urls.get('alibaba')
if custom_base_url:
base_url = custom_base_url
elif "gemini" in model_id.lower() or "google" in model_id.lower():
custom_base_url = api_base_urls.get('google')
if custom_base_url:
base_url = custom_base_url
elif "doubao" in model_id.lower():
custom_base_url = api_base_urls.get('doubao')
if custom_base_url:
base_url = custom_base_url
# 创建模型实例
model_instance = ModelFactory.create_model(
model_name=model_id,
api_key=api_key,
temperature=None if is_reasoning else float(settings.get('temperature', 0.7)),
system_prompt=settings.get('systemPrompt'),
language=settings.get('language', '中文'),
api_base_url=base_url # 现在BaseModel支持api_base_url参数
)
# 设置最大输出Token但不为阿里巴巴模型设置它们有自己内部的处理逻辑
is_alibaba_model = "qvq" in model_id.lower() or "alibaba" in model_id.lower() or "qwen" in model_id.lower()
if not is_alibaba_model:
model_instance.max_tokens = max_tokens
return model_instance
def stream_model_response(response_generator, sid, model_name=None):
"""Stream model responses to the client"""
try:
print("Starting response streaming...")
# 判断模型是否为推理模型
is_reasoning = model_name and ModelFactory.is_reasoning(model_name)
if is_reasoning:
print(f"使用推理模型 {model_name},将显示思考过程")
# 初始化:发送开始状态
socketio.emit('ai_response', {
'status': 'started',
'content': '',
'is_reasoning': is_reasoning
}, room=sid)
print("Sent initial status to client")
# 维护服务端缓冲区以累积完整内容
response_buffer = ""
thinking_buffer = ""
# 上次发送的时间戳,用于控制发送频率
last_emit_time = time.time()
# 流式处理响应
for response in response_generator:
# 处理Mathpix响应
if isinstance(response.get('content', ''), str) and 'mathpix' in response.get('model', ''):
if current_time - last_emit_time >= 0.3:
socketio.emit('ai_response', {
'status': 'thinking',
'content': thinking_buffer,
'is_reasoning': True
}, room=sid)
last_emit_time = current_time
elif status == 'thinking_complete':
# 仅对推理模型处理思考过程
if is_reasoning:
# 直接使用完整的思考内容
thinking_buffer = content
print(f"Thinking complete, total length: {len(thinking_buffer)} chars")
socketio.emit('ai_response', {
'status': 'thinking_complete',
'content': thinking_buffer,
'is_reasoning': True
}, room=sid)
elif status == 'streaming':
# 直接使用模型提供的完整内容
response_buffer = content
# 控制发送频率至少间隔0.3秒
current_time = time.time()
if current_time - last_emit_time >= 0.3:
socketio.emit('ai_response', {
'status': 'streaming',
'content': response_buffer,
'is_reasoning': is_reasoning
}, room=sid)
last_emit_time = current_time
elif status == 'completed':
# 确保发送最终完整内容
socketio.emit('ai_response', {
'status': 'completed',
'content': content or response_buffer,
'is_reasoning': is_reasoning
}, room=sid)
print("Response completed")
elif status == 'error':
# 错误状态直接转发
response['is_reasoning'] = is_reasoning
socketio.emit('ai_response', response, room=sid)
print(f"Error: {response.get('error', 'Unknown error')}")
# 其他状态直接转发
else:
response['is_reasoning'] = is_reasoning
socketio.emit('ai_response', response, room=sid)
except Exception as e:
error_msg = f"Streaming error: {str(e)}"
print(error_msg)
socketio.emit('ai_response', {
'status': 'error',
'error': error_msg,
'is_reasoning': model_name and ModelFactory.is_reasoning(model_name)
}, room=sid)
@socketio.on('request_screenshot')
def handle_screenshot_request():
try:
# 添加调试信息
print("DEBUG: 执行request_screenshot截图")
# Capture the screen
screenshot = pyautogui.screenshot()
# Convert the image to base64 string
buffered = BytesIO()
screenshot.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Emit the screenshot back to the client不打印base64数据
print("DEBUG: 完成request_screenshot截图图片大小: {} KB".format(len(img_str) // 1024))
socketio.emit('screenshot_response', {
'success': True,
'image': img_str
})
except Exception as e:
socketio.emit('screenshot_response', {
'success': False,
'error': str(e)
})
@socketio.on('extract_text')
def handle_text_extraction(data):
try:
print("Starting text extraction...")
# Validate input data
if not data or not isinstance(data, dict):
raise ValueError("Invalid request data")
if 'image' not in data:
raise ValueError("No image data provided")
image_data = data['image']
if not isinstance(image_data, str):
raise ValueError("Invalid image data format")
# 检查图像大小,避免处理过大的图像导致断开连接
image_size_bytes = len(image_data) * 3 / 4 # 估算base64的实际大小
if image_size_bytes > 10 * 1024 * 1024: # 10MB
raise ValueError("Image too large, please crop to a smaller area")
settings = data.get('settings', {})
if not isinstance(settings, dict):
raise ValueError("Invalid settings format")
# 优先使用百度OCR如果没有配置则使用Mathpix
# 首先尝试获取百度OCR API密钥
baidu_api_key = get_api_key('BaiduApiKey')
baidu_secret_key = get_api_key('BaiduSecretKey')
# 构建百度OCR API密钥格式api_key:secret_key
ocr_key = None
ocr_model = None
if baidu_api_key and baidu_secret_key:
ocr_key = f"{baidu_api_key}:{baidu_secret_key}"
ocr_model = 'baidu-ocr'
print("Using Baidu OCR for text extraction...")
else:
# 回退到Mathpix
mathpix_app_id = get_api_key('MathpixAppId')
mathpix_app_key = get_api_key('MathpixAppKey')
# 构建完整的Mathpix API密钥格式app_id:app_key
mathpix_key = f"{mathpix_app_id}:{mathpix_app_key}" if mathpix_app_id and mathpix_app_key else None
# 如果本地没有配置,尝试使用前端传递的密钥(向后兼容)
if not mathpix_key:
mathpix_key = settings.get('mathpixApiKey')
if mathpix_key:
ocr_key = mathpix_key
ocr_model = 'mathpix'
print("Using Mathpix OCR for text extraction...")
if not ocr_key:
raise ValueError("OCR API key is required. Please configure Baidu OCR (API Key + Secret Key) or Mathpix (App ID + App Key)")
# 先回复客户端,确认已收到请求,防止超时断开
# 注意这里不能使用return否则后续代码不会执行
socketio.emit('request_acknowledged', {
'status': 'received',
'message': f'Image received, text extraction in progress using {ocr_model}'
}, room=request.sid)
try:
if ocr_model == 'baidu-ocr':
api_key, secret_key = ocr_key.split(':')
if not api_key.strip() or not secret_key.strip():
raise ValueError()
elif ocr_model == 'mathpix':
app_id, app_key = ocr_key.split(':')
if not app_id.strip() or not app_key.strip():
raise ValueError()
except ValueError:
if ocr_model == 'baidu-ocr':
raise ValueError("Invalid Baidu OCR API key format. Expected format: 'API_KEY:SECRET_KEY'")
else:
raise ValueError("Invalid Mathpix API key format. Expected format: 'app_id:app_key'")
print(f"Creating {ocr_model} model instance...")
# ModelFactory.create_model会处理不同模型类型
model = ModelFactory.create_model(
model_name=ocr_model,
api_key=ocr_key
)
print("Starting text extraction...")
# 使用新的extract_full_text方法直接提取完整文本
extracted_text = model.extract_full_text(image_data)
# 直接返回文本结果
socketio.emit('text_extracted', {
'content': extracted_text
}, room=request.sid)
except ValueError as e:
error_msg = str(e)
print(f"Validation error: {error_msg}")
socketio.emit('text_extracted', {
'error': error_msg
}, room=request.sid)
except Exception as e:
error_msg = f"Text extraction error: {str(e)}"
print(f"Unexpected error: {error_msg}")
print(f"Error details: {type(e).__name__}")
socketio.emit('text_extracted', {
'error': error_msg
}, room=request.sid)
@socketio.on('stop_generation')
def handle_stop_generation():
"""处理停止生成请求"""
sid = request.sid
print(f"接收到停止生成请求: {sid}")
if sid in generation_tasks:
# 设置停止标志
stop_event = generation_tasks[sid]
stop_event.set()
# 发送已停止状态
socketio.emit('ai_response', {
'status': 'stopped',
'content': '生成已停止'
}, room=sid)
print(f"已停止用户 {sid} 的生成任务")
else:
print(f"未找到用户 {sid} 的生成任务")
@socketio.on('analyze_text')
def handle_analyze_text(data):
try:
text = data.get('text', '')
settings = data.get('settings', {})
# 获取推理配置
reasoning_config = settings.get('reasoningConfig', {})
# 获取maxTokens
max_tokens = int(settings.get('maxTokens', 8192))
print(f"Debug - 文本分析请求: {text[:50]}...")
print(f"Debug - 最大Token: {max_tokens}, 推理配置: {reasoning_config}")
# 获取模型和API密钥
model_id = settings.get('model', 'claude-3-7-sonnet-20250219')
if not text:
socketio.emit('error', {'message': '文本内容不能为空'})
return
# 获取模型信息,判断是否为推理模型
model_info = settings.get('modelInfo', {})
is_reasoning = model_info.get('isReasoning', False)
model_instance = create_model_instance(model_id, settings, is_reasoning)
# 将推理配置传递给模型
if reasoning_config:
model_instance.reasoning_config = reasoning_config
# 如果启用代理,配置代理设置
proxies = None
if settings.get('proxyEnabled'):
proxies = {
'http': f"http://{settings.get('proxyHost')}:{settings.get('proxyPort')}",
'https': f"http://{settings.get('proxyHost')}:{settings.get('proxyPort')}"
}
# 创建用于停止生成的事件
sid = request.sid
stop_event = Event()
generation_tasks[sid] = stop_event
try:
for response in model_instance.analyze_text(text, proxies=proxies):
# 检查是否收到停止信号
if stop_event.is_set():
print(f"分析文本生成被用户 {sid} 停止")
break
socketio.emit('ai_response', response, room=sid)
finally:
# 清理任务
if sid in generation_tasks:
del generation_tasks[sid]
except Exception as e:
print(f"Error in analyze_text: {str(e)}")
traceback.print_exc()
socketio.emit('error', {'message': f'分析文本时出错: {str(e)}'})
@socketio.on('analyze_image')
def handle_analyze_image(data):
try:
image_data = data.get('image')
settings = data.get('settings', {})
# 获取推理配置
reasoning_config = settings.get('reasoningConfig', {})
# 获取maxTokens
max_tokens = int(settings.get('maxTokens', 8192))
print(f"Debug - 图像分析请求")
print(f"Debug - 最大Token: {max_tokens}, 推理配置: {reasoning_config}")
# 获取模型和API密钥
model_id = settings.get('model', 'claude-3-7-sonnet-20250219')
if not image_data:
socketio.emit('error', {'message': '图像数据不能为空'})
return
# 获取模型信息,判断是否为推理模型
model_info = settings.get('modelInfo', {})
is_reasoning = model_info.get('isReasoning', False)
model_instance = create_model_instance(model_id, settings, is_reasoning)
# 将推理配置传递给模型
if reasoning_config:
model_instance.reasoning_config = reasoning_config
# 如果启用代理,配置代理设置
proxies = None
if settings.get('proxyEnabled'):
proxies = {
'http': f"http://{settings.get('proxyHost')}:{settings.get('proxyPort')}",
'https': f"http://{settings.get('proxyHost')}:{settings.get('proxyPort')}"
}
# 创建用于停止生成的事件
sid = request.sid
stop_event = Event()
generation_tasks[sid] = stop_event
try:
for response in model_instance.analyze_image(image_data, proxies=proxies):
# 检查是否收到停止信号
if stop_event.is_set():
print(f"分析图像生成被用户 {sid} 停止")
break
socketio.emit('ai_response', response, room=sid)
finally:
# 清理任务
if sid in generation_tasks:
del generation_tasks[sid]
except Exception as e:
print(f"Error in analyze_image: {str(e)}")
traceback.print_exc()
socketio.emit('error', {'message': f'分析图像时出错: {str(e)}'})
@socketio.on('capture_screenshot')
def handle_capture_screenshot(data):
try:
# 添加调试信息
print("DEBUG: 执行capture_screenshot截图")
# Capture the screen
screenshot = pyautogui.screenshot()
# Convert the image to base64 string
buffered = BytesIO()
screenshot.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Emit the screenshot back to the client不打印base64数据
print("DEBUG: 完成capture_screenshot截图图片大小: {} KB".format(len(img_str) // 1024))
socketio.emit('screenshot_complete', {
'success': True,
'image': img_str
}, room=request.sid)
except Exception as e:
error_msg = f"Screenshot error: {str(e)}"
print(f"Error capturing screenshot: {error_msg}")
socketio.emit('screenshot_complete', {
'success': False,
'error': error_msg
}, room=request.sid)
def load_model_config():
"""加载模型配置信息"""
try:
config_path = os.path.join(CONFIG_DIR, 'models.json')
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
return config
except Exception as e:
print(f"加载模型配置失败: {e}")
return {
"providers": {},
"models": {}
}
def load_prompts():
"""加载系统提示词配置"""
try:
if os.path.exists(PROMPT_FILE):
with open(PROMPT_FILE, 'r', encoding='utf-8') as f:
return json.load(f)
else:
# 如果文件不存在,创建默认提示词配置
default_prompts = {
"default": {
"name": "默认提示词",
"content": "您是一位专业的问题解决专家。请逐步分析问题,找出问题所在,并提供详细的解决方案。始终使用用户偏好的语言回答。",
"description": "通用问题解决提示词"
}
}
with open(PROMPT_FILE, 'w', encoding='utf-8') as f:
json.dump(default_prompts, f, ensure_ascii=False, indent=4)
return default_prompts
except Exception as e:
print(f"加载提示词配置失败: {e}")
return {
"default": {
"name": "默认提示词",
"content": "您是一位专业的问题解决专家。请逐步分析问题,找出问题所在,并提供详细的解决方案。始终使用用户偏好的语言回答。",
"description": "通用问题解决提示词"
}
}
def save_prompt(prompt_id, prompt_data):
"""保存单个提示词到配置文件"""
try:
prompts = load_prompts()
prompts[prompt_id] = prompt_data
with open(PROMPT_FILE, 'w', encoding='utf-8') as f:
json.dump(prompts, f, ensure_ascii=False, indent=4)
return True
except Exception as e:
print(f"保存提示词配置失败: {e}")
return False
def delete_prompt(prompt_id):
"""从配置文件中删除一个提示词"""
try:
prompts = load_prompts()
if prompt_id in prompts:
del prompts[prompt_id]
with open(PROMPT_FILE, 'w', encoding='utf-8') as f:
json.dump(prompts, f, ensure_ascii=False, indent=4)
return True
return False
except Exception as e:
print(f"删除提示词配置失败: {e}")
return False
# 替换 before_first_request 装饰器
def init_model_config():
"""初始化模型配置"""
try:
model_config = load_model_config()
# 更新ModelFactory的模型信息
if hasattr(ModelFactory, 'update_model_capabilities'):
ModelFactory.update_model_capabilities(model_config)
print("已加载模型配置")
except Exception as e:
print(f"初始化模型配置失败: {e}")
# 在请求处理前注册初始化函数
@app.before_request
def before_request_handler():
# 使用全局变量跟踪是否已初始化
if not getattr(app, '_model_config_initialized', False):
init_model_config()
app._model_config_initialized = True
# 版本检查函数
def check_for_updates():
"""检查GitHub上是否有新版本"""
try:
# 读取当前版本信息
version_file = os.path.join(CONFIG_DIR, 'version.json')
with open(version_file, 'r', encoding='utf-8') as f:
version_info = json.load(f)
current_version = version_info.get('version', '0.0.0')
repo = version_info.get('github_repo', 'Zippland/Snap-Solver')
# 请求GitHub API获取最新发布版本
api_url = f"https://api.github.com/repos/{repo}/releases/latest"
# 添加User-Agent以符合GitHub API要求
headers = {'User-Agent': 'Snap-Solver-Update-Checker'}
response = requests.get(api_url, headers=headers, timeout=5)
if response.status_code == 200:
latest_release = response.json()
latest_version = latest_release.get('tag_name', '').lstrip('v')
# 如果版本号为空,尝试从名称中提取
if not latest_version and 'name' in latest_release:
import re
version_match = re.search(r'v?(\d+\.\d+\.\d+)', latest_release['name'])
if version_match:
latest_version = version_match.group(1)
# 比较版本号(简单比较,可以改进为更复杂的语义版本比较)
has_update = compare_versions(latest_version, current_version)
update_info = {
'has_update': has_update,
'current_version': current_version,
'latest_version': latest_version,
'release_url': latest_release.get('html_url', f"https://github.com/{repo}/releases/latest"),
'release_date': latest_release.get('published_at', ''),
'release_notes': latest_release.get('body', ''),
}
# 缓存更新信息
update_info_file = os.path.join(CONFIG_DIR, 'update_info.json')
with open(update_info_file, 'w', encoding='utf-8') as f:
json.dump(update_info, f, ensure_ascii=False, indent=2)
return update_info
# 如果无法连接GitHub尝试读取缓存的更新信息
update_info_file = os.path.join(CONFIG_DIR, 'update_info.json')
if os.path.exists(update_info_file):
with open(update_info_file, 'r', encoding='utf-8') as f:
return json.load(f)
return {'has_update': False, 'current_version': current_version}
except Exception as e:
print(f"检查更新失败: {str(e)}")
# 出错时返回一个默认的值
return {'has_update': False, 'error': str(e)}
def compare_versions(version1, version2):
"""比较两个版本号如果version1比version2更新则返回True"""
try:
v1_parts = [int(x) for x in version1.split('.')]
v2_parts = [int(x) for x in version2.split('.')]
# 确保两个版本号的组成部分长度相同
while len(v1_parts) < len(v2_parts):
v1_parts.append(0)
while len(v2_parts) < len(v1_parts):
v2_parts.append(0)
# 逐部分比较
for i in range(len(v1_parts)):
if v1_parts[i] > v2_parts[i]:
return True
elif v1_parts[i] < v2_parts[i]:
return False
# 完全相同的版本
return False
except:
# 如果解析出错,默认不更新
return False
@app.route('/api/check-update', methods=['GET'])
def api_check_update():
"""检查更新的API端点"""
update_info = check_for_updates()
return jsonify(update_info)
# 添加配置文件路由
@app.route('/config/<path:filename>')
def serve_config(filename):
return send_from_directory(CONFIG_DIR, filename)
# 添加用于获取所有模型信息的API
@app.route('/api/models', methods=['GET'])
def get_models():
"""返回可用的模型列表"""
models = ModelFactory.get_available_models()
return jsonify(models)
# 获取所有API密钥
@app.route('/api/keys', methods=['GET'])
def get_api_keys():
"""获取所有API密钥"""
api_keys = load_api_keys()
return jsonify(api_keys)
# 保存API密钥
@app.route('/api/keys', methods=['POST'])
def update_api_keys():
"""更新API密钥配置"""
try:
new_keys = request.json
if not isinstance(new_keys, dict):
return jsonify({"success": False, "message": "无效的API密钥格式"}), 400
# 加载当前密钥
current_keys = load_api_keys()
# 更新密钥
for key, value in new_keys.items():
current_keys[key] = value
# 保存回文件
if save_api_keys(current_keys):
return jsonify({"success": True, "message": "API密钥已保存"})
else:
return jsonify({"success": False, "message": "保存API密钥失败"}), 500
except Exception as e:
return jsonify({"success": False, "message": f"更新API密钥错误: {str(e)}"}), 500
# 加载API密钥配置
def load_api_keys():
"""从配置文件加载API密钥"""
try:
default_keys = {
"AnthropicApiKey": "",
"OpenaiApiKey": "",
"DeepseekApiKey": "",
"AlibabaApiKey": "",
"MathpixAppId": "",
"MathpixAppKey": "",
"GoogleApiKey": "",
"DoubaoApiKey": "",
"BaiduApiKey": "",
"BaiduSecretKey": ""
}
if os.path.exists(API_KEYS_FILE):
with open(API_KEYS_FILE, 'r', encoding='utf-8') as f:
api_keys = json.load(f)
# 确保新增的密钥占位符能自动补充
missing_key_added = False
for key, default_value in default_keys.items():
if key not in api_keys:
api_keys[key] = default_value
missing_key_added = True
if missing_key_added:
save_api_keys(api_keys)
return api_keys
else:
# 如果文件不存在,创建默认配置
save_api_keys(default_keys)
return default_keys
except Exception as e:
print(f"加载API密钥配置失败: {e}")
return {}
# 加载中转API配置
def load_proxy_api():
"""从配置文件加载中转API配置"""
try:
if os.path.exists(PROXY_API_FILE):
with open(PROXY_API_FILE, 'r', encoding='utf-8') as f:
return json.load(f)
else:
# 如果文件不存在,创建默认配置
default_proxy_apis = {
"enabled": False,
"apis": {
"anthropic": "",
"openai": "",
"deepseek": "",
"alibaba": "",
"google": ""
}
}
save_proxy_api(default_proxy_apis)
return default_proxy_apis
except Exception as e:
print(f"加载中转API配置失败: {e}")
return {"enabled": False, "apis": {}}
# 保存中转API配置
def save_proxy_api(proxy_api_config):
"""保存中转API配置到文件"""
try:
# 确保配置目录存在
os.makedirs(os.path.dirname(PROXY_API_FILE), exist_ok=True)
with open(PROXY_API_FILE, 'w', encoding='utf-8') as f:
json.dump(proxy_api_config, f, ensure_ascii=False, indent=2)
return True
except Exception as e:
print(f"保存中转API配置失败: {e}")
return False
# 保存API密钥配置
def save_api_keys(api_keys):
try:
# 确保配置目录存在
os.makedirs(os.path.dirname(API_KEYS_FILE), exist_ok=True)
with open(API_KEYS_FILE, 'w', encoding='utf-8') as f:
json.dump(api_keys, f, ensure_ascii=False, indent=2)
return True
except Exception as e:
print(f"保存API密钥配置失败: {e}")
return False
# 获取特定API密钥
def get_api_key(key_name):
"""获取指定的API密钥"""
api_keys = load_api_keys()
return api_keys.get(key_name, "")
@app.route('/api/models')
def api_models():
"""API端点获取可用模型列表"""
try:
# 加载模型配置
config = load_model_config()
# 转换为前端需要的格式
models = []
for model_id, model_info in config['models'].items():
models.append({
'id': model_id,
'display_name': model_info.get('name', model_id),
'is_multimodal': model_info.get('supportsMultimodal', False),
'is_reasoning': model_info.get('isReasoning', False),
'description': model_info.get('description', ''),
'version': model_info.get('version', 'latest')
})
# 返回模型列表
return jsonify(models)
except Exception as e:
print(f"获取模型列表时出错: {e}")
return jsonify([]), 500
@app.route('/api/prompts', methods=['GET'])
def get_prompts():
"""API端点获取所有系统提示词"""
try:
prompts = load_prompts()
return jsonify(prompts)
except Exception as e:
print(f"获取提示词列表时出错: {e}")
return jsonify({"error": str(e)}), 500
@app.route('/api/prompts/<prompt_id>', methods=['GET'])
def get_prompt(prompt_id):
"""API端点获取单个系统提示词"""
try:
prompts = load_prompts()
if prompt_id in prompts:
return jsonify(prompts[prompt_id])
else:
return jsonify({"error": "提示词不存在"}), 404
except Exception as e:
print(f"获取提示词时出错: {e}")
return jsonify({"error": str(e)}), 500
@app.route('/api/prompts', methods=['POST'])
def add_prompt():
"""API端点添加或更新系统提示词"""
try:
data = request.json
if not data or not isinstance(data, dict):
return jsonify({"error": "无效的请求数据"}), 400
prompt_id = data.get('id')
if not prompt_id:
return jsonify({"error": "提示词ID不能为空"}), 400
prompt_data = {
"name": data.get('name', f"提示词{prompt_id}"),
"content": data.get('content', ""),
"description": data.get('description', "")
}
save_prompt(prompt_id, prompt_data)
return jsonify({"success": True, "id": prompt_id})
except Exception as e:
print(f"保存提示词时出错: {e}")
return jsonify({"error": str(e)}), 500
@app.route('/api/prompts/<prompt_id>', methods=['DELETE'])
def remove_prompt(prompt_id):
"""API端点删除系统提示词"""
try:
success = delete_prompt(prompt_id)
if success:
return jsonify({"success": True})
else:
return jsonify({"error": "提示词不存在或删除失败"}), 404
except Exception as e:
print(f"删除提示词时出错: {e}")
return jsonify({"error": str(e)}), 500
@app.route('/api/proxy-api', methods=['GET'])
def get_proxy_api():
"""API端点获取中转API配置"""
try:
proxy_api_config = load_proxy_api()
return jsonify(proxy_api_config)
except Exception as e:
print(f"获取中转API配置时出错: {e}")
return jsonify({"error": str(e)}), 500
@app.route('/api/proxy-api', methods=['POST'])
def update_proxy_api():
"""API端点更新中转API配置"""
try:
new_config = request.json
if not isinstance(new_config, dict):
return jsonify({"success": False, "message": "无效的中转API配置格式"}), 400
# 保存回文件
if save_proxy_api(new_config):
return jsonify({"success": True, "message": "中转API配置已保存"})
else:
return jsonify({"success": False, "message": "保存中转API配置失败"}), 500
except Exception as e:
return jsonify({"success": False, "message": f"更新中转API配置错误: {str(e)}"}), 500
@app.route('/api/clipboard', methods=['POST'])
def update_clipboard():
"""将文本复制到服务器剪贴板"""
try:
data = request.get_json(silent=True) or {}
text = data.get('text', '')
if not isinstance(text, str) or not text.strip():
return jsonify({"success": False, "message": "剪贴板内容不能为空"}), 400
# 直接尝试复制不使用is_available()检查
try:
pyperclip.copy(text)
return jsonify({"success": True})
except Exception as e:
return jsonify({"success": False, "message": f"复制到剪贴板失败: {str(e)}"}), 500
except Exception as e:
app.logger.exception("更新剪贴板时发生异常")
return jsonify({"success": False, "message": f"服务器内部错误: {str(e)}"}), 500
@app.route('/api/clipboard', methods=['GET'])
def get_clipboard():
"""从服务器剪贴板读取文本"""
try:
# 直接尝试读取不使用is_available()检查
try:
text = pyperclip.paste()
if text is None:
text = ""
return jsonify({
"success": True,
"text": text,
"message": "成功读取剪贴板内容"
})
except Exception as e:
return jsonify({"success": False, "message": f"读取剪贴板失败: {str(e)}"}), 500
except Exception as e:
app.logger.exception("读取剪贴板时发生异常")
return jsonify({"success": False, "message": f"服务器内部错误: {str(e)}"}), 500
if __name__ == '__main__':
# 尝试使用5000端口如果被占用则使用5001
port = 5000
import socket
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(('0.0.0.0', port))
s.close()
except OSError:
port = 5001
print(f"端口5000被占用将使用端口{port}")
local_ip = get_local_ip()
print(f"Local IP Address: {local_ip}")
print(f"Connect from your mobile device using: {local_ip}:{port}")
# 加载模型配置
model_config = load_model_config()
if hasattr(ModelFactory, 'update_model_capabilities'):
ModelFactory.update_model_capabilities(model_config)
print("已加载模型配置信息")
# Run Flask in the main thread without debug mode
socketio.run(app, host='0.0.0.0', port=port, allow_unsafe_werkzeug=True)