Files
Snap-Solver/models/openai.py

220 lines
8.4 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import os
from typing import Generator, Dict, Optional
from openai import OpenAI
from .base import BaseModel
class OpenAIModel(BaseModel):
def __init__(self, api_key, temperature=0.7, system_prompt=None, language=None, api_base_url=None, model_identifier=None):
super().__init__(api_key, temperature, system_prompt, language)
# 设置API基础URL默认为OpenAI官方API
self.api_base_url = api_base_url
# 允许从外部配置显式指定模型标识符
self.model_identifier = model_identifier or "gpt-4o-2024-11-20"
def get_default_system_prompt(self) -> str:
return """You are an expert at analyzing questions and providing detailed solutions. When presented with an image of a question:
1. First read and understand the question carefully
2. Break down the key components of the question
3. Provide a clear, step-by-step solution
4. If relevant, explain any concepts or theories involved
5. If there are multiple approaches, explain the most efficient one first"""
def get_model_identifier(self) -> str:
return self.model_identifier
def analyze_text(self, text: str, proxies: dict = None) -> Generator[dict, None, None]:
"""Stream GPT-4o's response for text analysis"""
try:
# Initial status
yield {"status": "started", "content": ""}
# Save original environment state
original_env = {
'http_proxy': os.environ.get('http_proxy'),
'https_proxy': os.environ.get('https_proxy')
}
try:
# Set proxy environment variables if provided
if proxies:
if 'http' in proxies:
os.environ['http_proxy'] = proxies['http']
if 'https' in proxies:
os.environ['https_proxy'] = proxies['https']
# Initialize OpenAI client with base_url if provided
if self.api_base_url:
client = OpenAI(api_key=self.api_key, base_url=self.api_base_url)
else:
client = OpenAI(api_key=self.api_key)
# Prepare messages
messages = [
{
"role": "system",
"content": self.system_prompt
},
{
"role": "user",
"content": text
}
]
response = client.chat.completions.create(
model=self.get_model_identifier(),
messages=messages,
temperature=self.temperature,
stream=True,
max_tokens=4000
)
# 使用累积缓冲区
response_buffer = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, 'content'):
content = chunk.choices[0].delta.content
if content:
# 累积内容
response_buffer += content
# 只在累积一定数量的字符或遇到句子结束标记时才发送
if len(content) >= 10 or content.endswith(('.', '!', '?', '', '', '', '\n')):
yield {
"status": "streaming",
"content": response_buffer
}
# 确保发送最终完整内容
if response_buffer:
yield {
"status": "streaming",
"content": response_buffer
}
# Send completion status
yield {
"status": "completed",
"content": response_buffer
}
finally:
# Restore original environment state
for key, value in original_env.items():
if value is None:
if key in os.environ:
del os.environ[key]
else:
os.environ[key] = value
except Exception as e:
yield {
"status": "error",
"error": str(e)
}
def analyze_image(self, image_data: str, proxies: dict = None) -> Generator[dict, None, None]:
"""Stream GPT-4o's response for image analysis"""
try:
# Initial status
yield {"status": "started", "content": ""}
# Save original environment state
original_env = {
'http_proxy': os.environ.get('http_proxy'),
'https_proxy': os.environ.get('https_proxy')
}
try:
# Set proxy environment variables if provided
if proxies:
if 'http' in proxies:
os.environ['http_proxy'] = proxies['http']
if 'https' in proxies:
os.environ['https_proxy'] = proxies['https']
# Initialize OpenAI client with base_url if provided
if self.api_base_url:
client = OpenAI(api_key=self.api_key, base_url=self.api_base_url)
else:
client = OpenAI(api_key=self.api_key)
# 使用系统提供的系统提示词,不再自动添加语言指令
system_prompt = self.system_prompt
# Prepare messages with image
messages = [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_data}"
}
},
{
"type": "text",
"text": "Please analyze this image and provide a detailed solution."
}
]
}
]
response = client.chat.completions.create(
model=self.get_model_identifier(),
messages=messages,
temperature=self.temperature,
stream=True,
max_tokens=4000
)
# 使用累积缓冲区
response_buffer = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, 'content'):
content = chunk.choices[0].delta.content
if content:
# 累积内容
response_buffer += content
# 只在累积一定数量的字符或遇到句子结束标记时才发送
if len(content) >= 10 or content.endswith(('.', '!', '?', '', '', '', '\n')):
yield {
"status": "streaming",
"content": response_buffer
}
# 确保发送最终完整内容
if response_buffer:
yield {
"status": "streaming",
"content": response_buffer
}
# Send completion status
yield {
"status": "completed",
"content": response_buffer
}
finally:
# Restore original environment state
for key, value in original_env.items():
if value is None:
if key in os.environ:
del os.environ[key]
else:
os.environ[key] = value
except Exception as e:
yield {
"status": "error",
"error": str(e)
}