Files
Snap-Solver/models/google.py
Gnoloah 4921d98d0a 1. 修复豆包系统提示词不起作用问题,以及输出格式渲染不正确问题;
2. 截图支持窗口大小与位置记忆,并在完成截图后默认发送给AI;
3. 调整页面布局,适合盲按开始截图,结果窗口置于截图之上.
2025-09-12 12:07:55 +08:00

250 lines
9.8 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import json
import os
import base64
from typing import Generator, Dict, Any, Optional, List
import google.generativeai as genai
from .base import BaseModel
class GoogleModel(BaseModel):
"""
Google Gemini API模型实现类
支持Gemini 2.5 Pro等模型可处理文本和图像输入
"""
def __init__(self, api_key: str, temperature: float = 0.7, system_prompt: str = None, language: str = None, model_name: str = None, api_base_url: str = None):
"""
初始化Google模型
Args:
api_key: Google API密钥
temperature: 生成温度
system_prompt: 系统提示词
language: 首选语言
model_name: 指定具体模型名称,如不指定则使用默认值
api_base_url: API基础URL用于设置自定义API端点
"""
super().__init__(api_key, temperature, system_prompt, language)
self.model_name = model_name or self.get_model_identifier()
self.max_tokens = 8192 # 默认最大输出token数
self.api_base_url = api_base_url
# 配置Google API
if api_base_url:
# 配置中转API - 使用环境变量方式
# 移除末尾的斜杠以避免重复路径问题
clean_base_url = api_base_url.rstrip('/')
# 设置环境变量来指定API端点
os.environ['GOOGLE_AI_API_ENDPOINT'] = clean_base_url
genai.configure(api_key=api_key)
else:
# 使用默认API端点
# 清除可能存在的自定义端点环境变量
if 'GOOGLE_AI_API_ENDPOINT' in os.environ:
del os.environ['GOOGLE_AI_API_ENDPOINT']
genai.configure(api_key=api_key)
def get_default_system_prompt(self) -> str:
return """You are an expert at analyzing questions and providing detailed solutions. When presented with an image of a question:
1. First read and understand the question carefully
2. Break down the key components of the question
3. Provide a clear, step-by-step solution
4. If relevant, explain any concepts or theories involved
5. If there are multiple approaches, explain the most efficient one first"""
def get_model_identifier(self) -> str:
"""返回默认的模型标识符"""
return "gemini-2.0-flash" # 使用有免费配额的模型作为默认值
def analyze_text(self, text: str, proxies: dict = None) -> Generator[dict, None, None]:
"""流式生成文本响应"""
try:
yield {"status": "started"}
# 设置环境变量代理(如果提供)
original_proxies = None
if proxies:
original_proxies = {
'http_proxy': os.environ.get('http_proxy'),
'https_proxy': os.environ.get('https_proxy')
}
if 'http' in proxies:
os.environ['http_proxy'] = proxies['http']
if 'https' in proxies:
os.environ['https_proxy'] = proxies['https']
try:
# 初始化模型
model = genai.GenerativeModel(self.model_name)
# 获取最大输出Token设置
max_tokens = self.max_tokens if hasattr(self, 'max_tokens') else 8192
# 创建配置参数
generation_config = {
'temperature': self.temperature,
'max_output_tokens': max_tokens,
'top_p': 0.95,
'top_k': 64,
}
# 构建提示
prompt_parts = []
# 添加系统提示词
if self.system_prompt:
prompt_parts.append(self.system_prompt)
# 添加用户查询
if self.language and self.language != 'auto':
prompt_parts.append(f"请使用{self.language}回答以下问题: {text}")
else:
prompt_parts.append(text)
# 初始化响应缓冲区
response_buffer = ""
# 流式生成响应
response = model.generate_content(
prompt_parts,
generation_config=generation_config,
stream=True
)
for chunk in response:
if not chunk.text:
continue
# 累积响应文本
response_buffer += chunk.text
# 发送响应进度
if len(chunk.text) >= 10 or chunk.text.endswith(('.', '!', '?', '', '', '', '\n')):
yield {
"status": "streaming",
"content": response_buffer
}
# 确保发送完整的最终内容
yield {
"status": "completed",
"content": response_buffer
}
finally:
# 恢复原始代理设置
if original_proxies:
for key, value in original_proxies.items():
if value is None:
if key in os.environ:
del os.environ[key]
else:
os.environ[key] = value
except Exception as e:
yield {
"status": "error",
"error": f"Gemini API错误: {str(e)}"
}
def analyze_image(self, image_data: str, proxies: dict = None) -> Generator[dict, None, None]:
"""分析图像并流式生成响应"""
try:
yield {"status": "started"}
# 设置环境变量代理(如果提供)
original_proxies = None
if proxies:
original_proxies = {
'http_proxy': os.environ.get('http_proxy'),
'https_proxy': os.environ.get('https_proxy')
}
if 'http' in proxies:
os.environ['http_proxy'] = proxies['http']
if 'https' in proxies:
os.environ['https_proxy'] = proxies['https']
try:
# 初始化模型
model = genai.GenerativeModel(self.model_name)
# 获取最大输出Token设置
max_tokens = self.max_tokens if hasattr(self, 'max_tokens') else 8192
# 创建配置参数
generation_config = {
'temperature': self.temperature,
'max_output_tokens': max_tokens,
'top_p': 0.95,
'top_k': 64,
}
# 构建提示词
prompt_parts = []
# 添加系统提示词
if self.system_prompt:
prompt_parts.append(self.system_prompt)
# 添加默认图像分析指令
if self.language and self.language != 'auto':
prompt_parts.append(f"请使用{self.language}分析这张图片并提供详细解答。")
else:
prompt_parts.append("请分析这张图片并提供详细解答。")
# 处理图像数据
if image_data.startswith('data:image'):
# 如果是data URI提取base64部分
image_data = image_data.split(',', 1)[1]
# 使用genai的特定方法处理图像
image_part = {
"mime_type": "image/jpeg",
"data": base64.b64decode(image_data)
}
prompt_parts.append(image_part)
# 初始化响应缓冲区
response_buffer = ""
# 流式生成响应
response = model.generate_content(
prompt_parts,
generation_config=generation_config,
stream=True
)
for chunk in response:
if not chunk.text:
continue
# 累积响应文本
response_buffer += chunk.text
# 发送响应进度
if len(chunk.text) >= 10 or chunk.text.endswith(('.', '!', '?', '', '', '', '\n')):
yield {
"status": "streaming",
"content": response_buffer
}
# 确保发送完整的最终内容
yield {
"status": "completed",
"content": response_buffer
}
finally:
# 恢复原始代理设置
if original_proxies:
for key, value in original_proxies.items():
if value is None:
if key in os.environ:
del os.environ[key]
else:
os.environ[key] = value
except Exception as e:
yield {
"status": "error",
"error": f"Gemini图像分析错误: {str(e)}"
}