Files
Snap-Solver/models/factory.py

278 lines
11 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from typing import Dict, Type, Any, Optional
import json
import os
import importlib
from .base import BaseModel
from .mathpix import MathpixModel # MathpixModel需要直接导入因为它是特殊OCR工具
from .baidu_ocr import BaiduOCRModel # 百度OCR也是特殊OCR工具直接导入
class ModelFactory:
# 模型基本信息,包含类型和特性
_models: Dict[str, Dict[str, Any]] = {}
_class_map: Dict[str, Type[BaseModel]] = {}
@classmethod
def initialize(cls):
"""从配置文件加载模型信息"""
try:
config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'models.json')
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
# 加载提供商信息和类映射
providers = config.get('providers', {})
for provider_id, provider_info in providers.items():
class_name = provider_info.get('class_name')
if class_name:
# 从当前包动态导入模型类
module = importlib.import_module(f'.{provider_id.lower()}', package=__package__)
cls._class_map[provider_id] = getattr(module, class_name)
# 加载模型信息
for model_id, model_info in config.get('models', {}).items():
provider_id = model_info.get('provider')
if provider_id and provider_id in cls._class_map:
cls._models[model_id] = {
'class': cls._class_map[provider_id],
'provider_id': provider_id,
'is_multimodal': model_info.get('supportsMultimodal', False),
'is_reasoning': model_info.get('isReasoning', False),
'display_name': model_info.get('name', model_id),
'description': model_info.get('description', '')
}
# 添加特殊OCR工具模型不在配置文件中定义
# 添加Mathpix OCR工具
cls._models['mathpix'] = {
'class': MathpixModel,
'is_multimodal': True,
'is_reasoning': False,
'display_name': 'Mathpix OCR',
'description': '数学公式识别工具,适用于复杂数学内容',
'is_ocr_only': True
}
# 添加百度OCR工具
cls._models['baidu-ocr'] = {
'class': BaiduOCRModel,
'is_multimodal': True,
'is_reasoning': False,
'display_name': '百度OCR',
'description': '通用文字识别工具,支持中文识别',
'is_ocr_only': True
}
print(f"已从配置加载 {len(cls._models)} 个模型")
except Exception as e:
print(f"加载模型配置失败: {str(e)}")
cls._initialize_defaults()
@classmethod
def _initialize_defaults(cls):
"""初始化默认模型(当配置加载失败时)"""
print("配置加载失败,使用空模型列表")
# 不再硬编码模型定义,而是使用空字典
cls._models = {}
# 添加特殊OCR工具当配置加载失败时的备用
try:
# 导入并添加Mathpix OCR工具
from .mathpix import MathpixModel
cls._models['mathpix'] = {
'class': MathpixModel,
'is_multimodal': True,
'is_reasoning': False,
'display_name': 'Mathpix OCR',
'description': '数学公式识别工具,适用于复杂数学内容',
'is_ocr_only': True
}
except Exception as e:
print(f"无法加载Mathpix OCR工具: {str(e)}")
# 添加百度OCR工具
try:
from .baidu_ocr import BaiduOCRModel
cls._models['baidu-ocr'] = {
'class': BaiduOCRModel,
'is_multimodal': True,
'is_reasoning': False,
'display_name': '百度OCR',
'description': '通用文字识别工具,支持中文识别',
'is_ocr_only': True
}
except Exception as e:
print(f"无法加载百度OCR工具: {str(e)}")
@classmethod
def create_model(cls, model_name: str, api_key: str, temperature: float = 0.7,
system_prompt: Optional[str] = None, language: Optional[str] = None, api_base_url: Optional[str] = None) -> BaseModel:
"""
Create a model instance based on the model name.
Args:
model_name: The identifier for the model
api_key: The API key for the model service
temperature: The temperature to use for generation
system_prompt: The system prompt to use
language: The preferred language for responses
api_base_url: The base URL for API requests
Returns:
A model instance
"""
if model_name not in cls._models:
raise ValueError(f"Unknown model: {model_name}")
model_info = cls._models[model_name]
model_class = model_info['class']
provider_id = model_info.get('provider_id')
if provider_id == 'openai':
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt,
language=language,
api_base_url=api_base_url,
model_identifier=model_name
)
# 对于DeepSeek模型需要传递正确的模型名称
if 'deepseek' in model_name.lower():
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt,
language=language,
model_name=model_name,
api_base_url=api_base_url
)
# 对于阿里巴巴模型,也需要传递正确的模型名称
elif 'qwen' in model_name.lower() or 'qvq' in model_name.lower() or 'alibaba' in model_name.lower():
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt,
language=language,
model_name=model_name
)
# 对于Google模型也需要传递正确的模型名称
elif 'gemini' in model_name.lower() or 'google' in model_name.lower():
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt,
language=language,
model_name=model_name,
api_base_url=api_base_url
)
# 对于豆包模型,也需要传递正确的模型名称
elif 'doubao' in model_name.lower():
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt,
language=language,
model_name=model_name,
api_base_url=api_base_url
)
# 对于Mathpix模型不传递language参数
elif model_name == 'mathpix':
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt
)
# 对于百度OCR模型传递api_key支持API_KEY:SECRET_KEY格式
elif model_name == 'baidu-ocr':
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt
)
# 对于Anthropic模型需要传递model_identifier参数
elif 'claude' in model_name.lower() or 'anthropic' in model_name.lower():
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt,
language=language,
api_base_url=api_base_url,
model_identifier=model_name
)
else:
# 其他模型仅传递标准参数
return model_class(
api_key=api_key,
temperature=temperature,
system_prompt=system_prompt,
language=language,
api_base_url=api_base_url
)
@classmethod
def get_available_models(cls) -> list[Dict[str, Any]]:
"""Return a list of available models with their information"""
models_info = []
for model_id, info in cls._models.items():
# 跳过仅OCR工具模型
if info.get('is_ocr_only', False):
continue
models_info.append({
'id': model_id,
'display_name': info.get('display_name', model_id),
'description': info.get('description', ''),
'is_multimodal': info.get('is_multimodal', False),
'is_reasoning': info.get('is_reasoning', False)
})
return models_info
@classmethod
def get_model_ids(cls) -> list[str]:
"""Return a list of available model identifiers"""
return [model_id for model_id in cls._models.keys()
if not cls._models[model_id].get('is_ocr_only', False)]
@classmethod
def is_multimodal(cls, model_name: str) -> bool:
"""判断模型是否支持多模态输入"""
return cls._models.get(model_name, {}).get('is_multimodal', False)
@classmethod
def is_reasoning(cls, model_name: str) -> bool:
"""判断模型是否为推理模型"""
return cls._models.get(model_name, {}).get('is_reasoning', False)
@classmethod
def get_model_display_name(cls, model_name: str) -> str:
"""获取模型的显示名称"""
return cls._models.get(model_name, {}).get('display_name', model_name)
@classmethod
def register_model(cls, model_name: str, model_class: Type[BaseModel],
is_multimodal: bool = False, is_reasoning: bool = False,
display_name: Optional[str] = None, description: Optional[str] = None) -> None:
"""
Register a new model type with the factory.
Args:
model_name: The identifier for the model
model_class: The model class to register
is_multimodal: Whether the model supports image input
is_reasoning: Whether the model provides reasoning process
display_name: Human-readable name for the model
description: Description of the model
"""
cls._models[model_name] = {
'class': model_class,
'is_multimodal': is_multimodal,
'is_reasoning': is_reasoning,
'display_name': display_name or model_name,
'description': description or ''
}