import json import os import base64 from typing import Generator, Dict, Any, Optional, List import google.generativeai as genai from .base import BaseModel class GoogleModel(BaseModel): """ Google Gemini API模型实现类 支持Gemini 2.5 Pro等模型,可处理文本和图像输入 """ def __init__(self, api_key: str, temperature: float = 0.7, system_prompt: str = None, language: str = None, model_name: str = None, api_base_url: str = None): """ 初始化Google模型 Args: api_key: Google API密钥 temperature: 生成温度 system_prompt: 系统提示词 language: 首选语言 model_name: 指定具体模型名称,如不指定则使用默认值 api_base_url: API基础URL,用于设置自定义API端点 """ super().__init__(api_key, temperature, system_prompt, language) self.model_name = model_name or self.get_model_identifier() self.max_tokens = 8192 # 默认最大输出token数 self.api_base_url = api_base_url # 配置Google API if api_base_url: # 配置中转API - 使用环境变量方式 # 移除末尾的斜杠以避免重复路径问题 clean_base_url = api_base_url.rstrip('/') # 设置环境变量来指定API端点 os.environ['GOOGLE_AI_API_ENDPOINT'] = clean_base_url genai.configure(api_key=api_key) else: # 使用默认API端点 # 清除可能存在的自定义端点环境变量 if 'GOOGLE_AI_API_ENDPOINT' in os.environ: del os.environ['GOOGLE_AI_API_ENDPOINT'] genai.configure(api_key=api_key) def get_default_system_prompt(self) -> str: return """You are an expert at analyzing questions and providing detailed solutions. When presented with an image of a question: 1. First read and understand the question carefully 2. Break down the key components of the question 3. Provide a clear, step-by-step solution 4. If relevant, explain any concepts or theories involved 5. If there are multiple approaches, explain the most efficient one first""" def get_model_identifier(self) -> str: """返回默认的模型标识符""" return "gemini-2.0-flash" # 使用有免费配额的模型作为默认值 def analyze_text(self, text: str, proxies: dict = None) -> Generator[dict, None, None]: """流式生成文本响应""" try: yield {"status": "started"} # 设置环境变量代理(如果提供) original_proxies = None if proxies: original_proxies = { 'http_proxy': os.environ.get('http_proxy'), 'https_proxy': os.environ.get('https_proxy') } if 'http' in proxies: os.environ['http_proxy'] = proxies['http'] if 'https' in proxies: os.environ['https_proxy'] = proxies['https'] try: # 初始化模型 model = genai.GenerativeModel(self.model_name) # 获取最大输出Token设置 max_tokens = self.max_tokens if hasattr(self, 'max_tokens') else 8192 # 创建配置参数 generation_config = { 'temperature': self.temperature, 'max_output_tokens': max_tokens, 'top_p': 0.95, 'top_k': 64, } # 构建提示 prompt_parts = [] # 添加系统提示词 if self.system_prompt: prompt_parts.append(self.system_prompt) # 添加用户查询 if self.language and self.language != 'auto': prompt_parts.append(f"请使用{self.language}回答以下问题: {text}") else: prompt_parts.append(text) # 初始化响应缓冲区 response_buffer = "" # 流式生成响应 response = model.generate_content( prompt_parts, generation_config=generation_config, stream=True ) for chunk in response: if not chunk.text: continue # 累积响应文本 response_buffer += chunk.text # 发送响应进度 if len(chunk.text) >= 10 or chunk.text.endswith(('.', '!', '?', '。', '!', '?', '\n')): yield { "status": "streaming", "content": response_buffer } # 确保发送完整的最终内容 yield { "status": "completed", "content": response_buffer } finally: # 恢复原始代理设置 if original_proxies: for key, value in original_proxies.items(): if value is None: if key in os.environ: del os.environ[key] else: os.environ[key] = value except Exception as e: yield { "status": "error", "error": f"Gemini API错误: {str(e)}" } def analyze_image(self, image_data: str, proxies: dict = None) -> Generator[dict, None, None]: """分析图像并流式生成响应""" try: yield {"status": "started"} # 设置环境变量代理(如果提供) original_proxies = None if proxies: original_proxies = { 'http_proxy': os.environ.get('http_proxy'), 'https_proxy': os.environ.get('https_proxy') } if 'http' in proxies: os.environ['http_proxy'] = proxies['http'] if 'https' in proxies: os.environ['https_proxy'] = proxies['https'] try: # 初始化模型 model = genai.GenerativeModel(self.model_name) # 获取最大输出Token设置 max_tokens = self.max_tokens if hasattr(self, 'max_tokens') else 8192 # 创建配置参数 generation_config = { 'temperature': self.temperature, 'max_output_tokens': max_tokens, 'top_p': 0.95, 'top_k': 64, } # 构建提示词 prompt_parts = [] # 添加系统提示词 if self.system_prompt: prompt_parts.append(self.system_prompt) # 添加默认图像分析指令 if self.language and self.language != 'auto': prompt_parts.append(f"请使用{self.language}分析这张图片并提供详细解答。") else: prompt_parts.append("请分析这张图片并提供详细解答。") # 处理图像数据 if image_data.startswith('data:image'): # 如果是data URI,提取base64部分 image_data = image_data.split(',', 1)[1] # 使用genai的特定方法处理图像 image_part = { "mime_type": "image/jpeg", "data": base64.b64decode(image_data) } prompt_parts.append(image_part) # 初始化响应缓冲区 response_buffer = "" # 流式生成响应 response = model.generate_content( prompt_parts, generation_config=generation_config, stream=True ) for chunk in response: if not chunk.text: continue # 累积响应文本 response_buffer += chunk.text # 发送响应进度 if len(chunk.text) >= 10 or chunk.text.endswith(('.', '!', '?', '。', '!', '?', '\n')): yield { "status": "streaming", "content": response_buffer } # 确保发送完整的最终内容 yield { "status": "completed", "content": response_buffer } finally: # 恢复原始代理设置 if original_proxies: for key, value in original_proxies.items(): if value is None: if key in os.environ: del os.environ[key] else: os.environ[key] = value except Exception as e: yield { "status": "error", "error": f"Gemini图像分析错误: {str(e)}" }