mirror of
https://github.com/Zippland/Snap-Solver.git
synced 2026-02-07 00:11:59 +08:00
重构模型管理和配置加载逻辑,支持多模态和推理模型,优化API密钥管理,改进前端模型选择和版本显示
This commit is contained in:
209
models/openai.py
Normal file
209
models/openai.py
Normal file
@@ -0,0 +1,209 @@
|
||||
import os
|
||||
from typing import Generator, Dict, Optional
|
||||
from openai import OpenAI
|
||||
from .base import BaseModel
|
||||
|
||||
class OpenAIModel(BaseModel):
|
||||
def get_default_system_prompt(self) -> str:
|
||||
return """You are an expert at analyzing questions and providing detailed solutions. When presented with an image of a question:
|
||||
1. First read and understand the question carefully
|
||||
2. Break down the key components of the question
|
||||
3. Provide a clear, step-by-step solution
|
||||
4. If relevant, explain any concepts or theories involved
|
||||
5. If there are multiple approaches, explain the most efficient one first"""
|
||||
|
||||
def get_model_identifier(self) -> str:
|
||||
return "gpt-4o-2024-11-20"
|
||||
|
||||
def analyze_text(self, text: str, proxies: dict = None) -> Generator[dict, None, None]:
|
||||
"""Stream GPT-4o's response for text analysis"""
|
||||
try:
|
||||
# Initial status
|
||||
yield {"status": "started", "content": ""}
|
||||
|
||||
# Save original environment state
|
||||
original_env = {
|
||||
'http_proxy': os.environ.get('http_proxy'),
|
||||
'https_proxy': os.environ.get('https_proxy')
|
||||
}
|
||||
|
||||
try:
|
||||
# Set proxy environment variables if provided
|
||||
if proxies:
|
||||
if 'http' in proxies:
|
||||
os.environ['http_proxy'] = proxies['http']
|
||||
if 'https' in proxies:
|
||||
os.environ['https_proxy'] = proxies['https']
|
||||
|
||||
# Initialize OpenAI client
|
||||
client = OpenAI(api_key=self.api_key)
|
||||
|
||||
# Prepare messages
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": self.system_prompt
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": text
|
||||
}
|
||||
]
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model=self.get_model_identifier(),
|
||||
messages=messages,
|
||||
temperature=self.temperature,
|
||||
stream=True,
|
||||
max_tokens=4000
|
||||
)
|
||||
|
||||
# 使用累积缓冲区
|
||||
response_buffer = ""
|
||||
|
||||
for chunk in response:
|
||||
if hasattr(chunk.choices[0].delta, 'content'):
|
||||
content = chunk.choices[0].delta.content
|
||||
if content:
|
||||
# 累积内容
|
||||
response_buffer += content
|
||||
|
||||
# 只在累积一定数量的字符或遇到句子结束标记时才发送
|
||||
if len(content) >= 10 or content.endswith(('.', '!', '?', '。', '!', '?', '\n')):
|
||||
yield {
|
||||
"status": "streaming",
|
||||
"content": response_buffer
|
||||
}
|
||||
|
||||
# 确保发送最终完整内容
|
||||
if response_buffer:
|
||||
yield {
|
||||
"status": "streaming",
|
||||
"content": response_buffer
|
||||
}
|
||||
|
||||
# Send completion status
|
||||
yield {
|
||||
"status": "completed",
|
||||
"content": response_buffer
|
||||
}
|
||||
|
||||
finally:
|
||||
# Restore original environment state
|
||||
for key, value in original_env.items():
|
||||
if value is None:
|
||||
if key in os.environ:
|
||||
del os.environ[key]
|
||||
else:
|
||||
os.environ[key] = value
|
||||
|
||||
except Exception as e:
|
||||
yield {
|
||||
"status": "error",
|
||||
"error": str(e)
|
||||
}
|
||||
|
||||
def analyze_image(self, image_data: str, proxies: dict = None) -> Generator[dict, None, None]:
|
||||
"""Stream GPT-4o's response for image analysis"""
|
||||
try:
|
||||
# Initial status
|
||||
yield {"status": "started", "content": ""}
|
||||
|
||||
# Save original environment state
|
||||
original_env = {
|
||||
'http_proxy': os.environ.get('http_proxy'),
|
||||
'https_proxy': os.environ.get('https_proxy')
|
||||
}
|
||||
|
||||
try:
|
||||
# Set proxy environment variables if provided
|
||||
if proxies:
|
||||
if 'http' in proxies:
|
||||
os.environ['http_proxy'] = proxies['http']
|
||||
if 'https' in proxies:
|
||||
os.environ['https_proxy'] = proxies['https']
|
||||
|
||||
# Initialize OpenAI client
|
||||
client = OpenAI(api_key=self.api_key)
|
||||
|
||||
# 检查系统提示词是否已包含语言设置指令
|
||||
system_prompt = self.system_prompt
|
||||
language = self.language or '中文'
|
||||
if not any(phrase in system_prompt for phrase in ['Please respond in', '请用', '使用', '回答']):
|
||||
system_prompt = f"{system_prompt}\n\n请务必使用{language}回答,无论问题是什么语言。即使在分析图像时也请使用{language}回答。"
|
||||
|
||||
# Prepare messages with image
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": system_prompt
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_data}"
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Please analyze this image and provide a detailed solution."
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model=self.get_model_identifier(),
|
||||
messages=messages,
|
||||
temperature=self.temperature,
|
||||
stream=True,
|
||||
max_tokens=4000
|
||||
)
|
||||
|
||||
# 使用累积缓冲区
|
||||
response_buffer = ""
|
||||
|
||||
for chunk in response:
|
||||
if hasattr(chunk.choices[0].delta, 'content'):
|
||||
content = chunk.choices[0].delta.content
|
||||
if content:
|
||||
# 累积内容
|
||||
response_buffer += content
|
||||
|
||||
# 只在累积一定数量的字符或遇到句子结束标记时才发送
|
||||
if len(content) >= 10 or content.endswith(('.', '!', '?', '。', '!', '?', '\n')):
|
||||
yield {
|
||||
"status": "streaming",
|
||||
"content": response_buffer
|
||||
}
|
||||
|
||||
# 确保发送最终完整内容
|
||||
if response_buffer:
|
||||
yield {
|
||||
"status": "streaming",
|
||||
"content": response_buffer
|
||||
}
|
||||
|
||||
# Send completion status
|
||||
yield {
|
||||
"status": "completed",
|
||||
"content": response_buffer
|
||||
}
|
||||
|
||||
finally:
|
||||
# Restore original environment state
|
||||
for key, value in original_env.items():
|
||||
if value is None:
|
||||
if key in os.environ:
|
||||
del os.environ[key]
|
||||
else:
|
||||
os.environ[key] = value
|
||||
|
||||
except Exception as e:
|
||||
yield {
|
||||
"status": "error",
|
||||
"error": str(e)
|
||||
}
|
||||
Reference in New Issue
Block a user