Files
Intelligent-Elderly-Care/Class/collect_data/get_faces_from_camera.py
2020-06-30 11:14:47 +08:00

178 lines
7.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# 进行人脸录入 / face register
# 录入多张人脸 / support multi-faces
import dlib # 人脸处理的库 Dlib
import numpy as np # 数据处理的库 Numpy
import cv2 # 图像处理的库 OpenCV
import os # 读写文件
import shutil # 读写文件
import time
# Dlib 正向人脸检测器
detector = dlib.get_frontal_face_detector()
class Face_Register:
def __init__(self):
self.path_photos_from_camera = "data/data_faces_from_camera/"
self.font = cv2.FONT_ITALIC
self.existing_faces_cnt = 0 # 已录入的人脸计数器
self.ss_cnt = 0 # 录入 personX 人脸时图片计数器
self.faces_cnt = 0 # 录入人脸计数器
# 之后用来控制是否保存图像的 flag
self.save_flag = 1
# 之后用来检查是否先按 'n' 再按 's',即先新建文件夹再保存
self.press_n_flag = 0
self.frame_time = 0
self.frame_start_time = 0
self.fps = 0
# 新建保存人脸图像文件
def pre_work_mkdir(self):
if os.path.isdir(self.path_photos_from_camera):
pass
else:
os.mkdir(self.path_photos_from_camera)
# 删除之前存的人脸数据文件夹
def pre_work_del_old_face_folders(self):
# 删除之前存的人脸数据文件夹
folders_rd = os.listdir(self.path_photos_from_camera)
for i in range(len(folders_rd)):
shutil.rmtree(self.path_photos_from_camera+folders_rd[i])
if os.path.isfile("data/features_all.csv"):
os.remove("data/features_all.csv")
# 如果有之前录入的人脸, 在之前 person_x 的序号按照 person_x+1 开始录入
def check_existing_faces_cnt(self):
if os.listdir("data/data_faces_from_camera/"):
# 获取已录入的最后一个人脸序号
person_list = os.listdir("data/data_faces_from_camera/")
person_num_list = []
for person in person_list:
person_num_list.append(int(person.split('_')[-1]))
self.existing_faces_cnt = max(person_num_list)
# 如果第一次存储或者没有之前录入的人脸, 按照 person_1 开始录入
# Start from person_1
else:
self.existing_faces_cnt = 0
# 获取处理之后 stream 的帧数
def update_fps(self):
now = time.time()
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
# 生成的 cv2 window 上面添加说明文字
def draw_note(self, img_rd):
# 添加说明
cv2.putText(img_rd, "Face Register", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.faces_cnt), (20, 140), self.font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "N: Create face folder", (20, 350), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "S: Save current face", (20, 400), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
# 获取人脸
def process(self, stream):
# 1. 新建储存人脸图像文件目录
# self.pre_work_mkdir()
# 2. 删除 "/data/data_faces_from_camera" 中已有人脸图像文件
self.pre_work_del_old_face_folders()
# 3. 检查 "/data/data_faces_from_camera" 中已有人脸文件
self.check_existing_faces_cnt()
while stream.isOpened():
flag, img_rd = stream.read() # Get camera video stream
kk = cv2.waitKey(1)
faces = detector(img_rd, 0) # Use dlib face detector
# 4. 按下 'n' 新建存储人脸的文件夹
if kk == ord('n'):
self.existing_faces_cnt += 1
current_face_dir = self.path_photos_from_camera + "person_" + str(self.existing_faces_cnt)
os.makedirs(current_face_dir)
print('\n')
print("新建的人脸文件夹 / Create folders: ", current_face_dir)
self.ss_cnt = 0 # 将人脸计数器清零
self.press_n_flag = 1 # 已经按下 'n'
# 5. 检测到人脸
if len(faces) != 0:
# 矩形框
for k, d in enumerate(faces):
# 计算矩形框大小
height = (d.bottom() - d.top())
width = (d.right() - d.left())
hh = int(height/2)
ww = int(width/2)
# 6. 判断人脸矩形框是否超出 480x640
if (d.right()+ww) > 640 or (d.bottom()+hh > 480) or (d.left()-ww < 0) or (d.top()-hh < 0):
cv2.putText(img_rd, "OUT OF RANGE", (20, 300), self.font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
color_rectangle = (0, 0, 255)
save_flag = 0
if kk == ord('s'):
print("请调整位置 / Please adjust your position")
else:
color_rectangle = (255, 255, 255)
save_flag = 1
cv2.rectangle(img_rd,
tuple([d.left() - ww, d.top() - hh]),
tuple([d.right() + ww, d.bottom() + hh]),
color_rectangle, 2)
# 7. 根据人脸大小生成空的图像
img_blank = np.zeros((int(height*2), width*2, 3), np.uint8)
if save_flag:
# 8. 按下 's' 保存摄像头中的人脸到本地
if kk == ord('s'):
# 检查有没有先按'n'新建文件夹
if self.press_n_flag:
self.ss_cnt += 1
for ii in range(height*2):
for jj in range(width*2):
img_blank[ii][jj] = img_rd[d.top()-hh + ii][d.left()-ww + jj]
cv2.imwrite(current_face_dir + "/img_face_" + str(self.ss_cnt) + ".jpg", img_blank)
print("写入本地 / Save into", str(current_face_dir) + "/img_face_" + str(self.ss_cnt) + ".jpg")
else:
print("请先按 'N' 来建文件夹, 按 'S' / Please press 'N' and press 'S'")
self.faces_cnt = len(faces)
# 9. 生成的窗口添加说明文字
self.draw_note(img_rd)
# 10. 按下 'q' 键退出
if kk == ord('q'):
break
self.update_fps()
cv2.namedWindow("camera", 1)
cv2.imshow("camera", img_rd)
def run(self):
cap = cv2.VideoCapture(0)
self.process(cap)
cap.release()
cv2.destroyAllWindows()
def main():
Face_Register_con = Face_Register()
Face_Register_con.run()
if __name__ == '__main__':
main()