Files
Intelligent-Elderly-Care/Class/detection/check_smile_from_camera.py
2020-07-06 17:05:50 +08:00

110 lines
3.4 KiB
Python

from sklearn.externals import joblib
import ML_ways_sklearn
import dlib
import numpy as np
import cv2
detector = dlib.get_frontal_face_detector()
# OpenCV DNN face detector
# detector = cv2.dnn.readNetFromCaffe("data/data_opencv/deploy.prototxt.txt",
# "data/data_opencv/res10_300x300_ssd_iter_140000.caffemodel")
predictor = dlib.shape_predictor('data/data_dlib_model/shape_predictor_68_face_landmarks.dat')
# OpenCV 调用摄像头
cap = cv2.VideoCapture(0)
# 设置视频参数
cap.set(3, 480)
def get_features(img_rd):
# 输入: img_rd: 图像文件
# 输出: positions_lip_arr: feature point 49 to feature point 68, 20 feature points / 40D in all
# 取灰度
img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY)
# 计算68点坐标
positions_68_arr = []
faces = detector(img_gray, 0)
landmarks = np.matrix([[p.x, p.y] for p in predictor(img_rd, faces[0]).parts()])
for idx, point in enumerate(landmarks):
# 68点的坐标
pos = (point[0, 0], point[0, 1])
positions_68_arr.append(pos)
positions_lip_arr = []
# 将点 49-68 写入 CSV
# 即 positions_68_arr[48]-positions_68_arr[67]
for i in range(48, 68):
positions_lip_arr.append(positions_68_arr[i][0])
positions_lip_arr.append(positions_68_arr[i][1])
return positions_lip_arr
while cap.isOpened():
# 480 height * 640 width
flag, img_rd = cap.read()
kk = cv2.waitKey(1)
img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY)
# 人脸数 faces
faces = detector(img_gray, 0)
# 检测到人脸
if len(faces) != 0:
# 提取单张40维度特征
positions_lip_test = get_features(img_rd)
# path of models
path_models = "data/data_models/"
# ######### LR ###########
LR = joblib.load(path_models+"model_LR.m")
ss_LR = ML_ways_sklearn.model_LR()
X_test_LR = ss_LR.transform([positions_lip_test])
y_predict_LR = str(LR.predict(X_test_LR)[0]).replace('0', "no smile").replace('1', "with smile")
print("LR:", y_predict_LR)
# ######### LSVC ###########
LSVC = joblib.load(path_models+"model_LSVC.m")
ss_LSVC = ML_ways_sklearn.model_LSVC()
X_test_LSVC = ss_LSVC.transform([positions_lip_test])
y_predict_LSVC = str(LSVC.predict(X_test_LSVC)[0]).replace('0', "no smile").replace('1', "with smile")
print("LSVC:", y_predict_LSVC)
# ######### MLPC ###########
MLPC = joblib.load(path_models+"model_MLPC.m")
ss_MLPC = ML_ways_sklearn.model_MLPC()
X_test_MLPC = ss_MLPC.transform([positions_lip_test])
y_predict_MLPC = str(MLPC.predict(X_test_MLPC)[0]).replace('0', "no smile").replace('1', "with smile")
print("MLPC:", y_predict_MLPC)
# ######### SGDC ###########
SGDC = joblib.load(path_models+"model_SGDC.m")
ss_SGDC = ML_ways_sklearn.model_SGDC()
X_test_SGDC = ss_SGDC.transform([positions_lip_test])
y_predict_SGDC = str(SGDC.predict(X_test_SGDC)[0]).replace('0', "no smile").replace('1', "with smile")
print("SGDC:", y_predict_SGDC)
print('\n')
# 按下 'q' 键退出
if kk == ord('q'):
break
# 窗口显示
# cv2.namedWindow("camera", 0) # 如果需要摄像头窗口大小可调
cv2.imshow("camera", img_rd)
# 释放摄像头
cap.release()
# 删除建立的窗口
cv2.destroyAllWindows()