103 lines
3.4 KiB
Python
103 lines
3.4 KiB
Python
from imutils.video import VideoStream
|
|
import imutils
|
|
import time
|
|
import cv2
|
|
import numpy as np
|
|
import statistics
|
|
import queue
|
|
import math
|
|
|
|
|
|
def fall_detect(cnts, defined_min_area, frame, prevX, prevY, xList, yList, centerV, alert):
|
|
|
|
for c in cnts:
|
|
#exclusion
|
|
if cv2.contourArea(c) < defined_min_area:
|
|
continue
|
|
|
|
# outer bounding box
|
|
(x_b, y_b, w_b, h_b) = cv2.boundingRect(c)
|
|
cv2.rectangle(frame, (x_b, y_b), (x_b + w_b, y_b + h_b), (0, 255, 255), 2) # 黄色矩形
|
|
|
|
#rotating bounding box
|
|
rect = cv2.minAreaRect(c) # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度)
|
|
box = cv2.boxPoints(rect) # 获取最小外接矩形的4个顶点坐标
|
|
box = np.int0(box)
|
|
cv2.drawContours(frame,[box],0,(0,0,255),2)
|
|
|
|
#averaging line
|
|
rows,cols = frame.shape[:2]
|
|
[vx,vy,x,y] = cv2.fitLine(c, cv2.DIST_L2, 0, 0.01, 0.01)
|
|
lefty = (-x * vy/vx) + y
|
|
righty =((cols-x) * vy/vx)+y
|
|
cv2.line(frame,(cols-1,righty),(0,lefty),(255,0,0),2)
|
|
|
|
#ellipse
|
|
elps = cv2.fitEllipse(c)
|
|
(x, y), (MA, ma), angle = cv2.fitEllipse(c)
|
|
cv2.ellipse(frame, elps,(255,0,0),3) #red
|
|
|
|
#Aspect Ratio
|
|
AR = MA/ma
|
|
|
|
#Center Speed - acceleration
|
|
prevX = 0.0
|
|
prevY = 0.0
|
|
centerSpeed =0
|
|
if xList.full():
|
|
prevX = statistics.median(list(xList.queue))
|
|
prevY = statistics.median(list(yList.queue))
|
|
xList.get()
|
|
yList.get()
|
|
|
|
xList.put(elps[0][0])
|
|
yList.put(elps[0][1])
|
|
X = statistics.median(list(xList.queue))
|
|
Y = statistics.median(list(yList.queue))
|
|
|
|
if xList.full():
|
|
dx = abs(prevX-X)
|
|
dy = abs(prevY-Y)
|
|
centerV = math.sqrt(dx**2+dy**2)
|
|
|
|
# calculate probabilities for the 4 features
|
|
pAngle = (abs(angle-90)-50)/10
|
|
pAngle = 1 / (math.exp(pAngle)+1)
|
|
|
|
pAR = 10*AR - 5
|
|
pAR = 1 / (math.exp(pAR) + 1)
|
|
|
|
ACS = centerV - 9
|
|
ACS = 1 / (math.exp(ACS) + 1)
|
|
|
|
# print("pAngle : ", pAngle)
|
|
# print("pAR : ", pAR)
|
|
# print("ACS : ", ACS)
|
|
|
|
#confidence
|
|
P_FALL = pAngle * pAR * ACS + 0.5
|
|
# print("P_FALL1 : ", P_FALL)
|
|
|
|
P_FALL = 1/ (math.exp(-(P_FALL-0.65)*10)+1)
|
|
# print("P_FALL2: ", P_FALL)
|
|
|
|
#status display
|
|
cv2.putText(frame, "Status : ", (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
|
cv2.putText(frame, "Fall Confidence: {0:.2f} ".format(P_FALL), (10,50),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 128, 255), 2)
|
|
# cv2.putText(frame, "Angle: {0:.2f}".format(angle), (10, 220),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
|
|
# cv2.putText(frame, "AR: {0:.2f}".format(AR), (10, 237),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
|
|
# cv2.putText(frame, "Center Speed: {0:.2f}".format(centerV), (10, 256),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
|
|
|
|
#fall
|
|
if P_FALL > 0.88:
|
|
if alert >= 8:
|
|
print("fall")
|
|
cv2.putText(frame, " Fall Detected", (82, 20),cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
|
# cv2.imwrite("report.jpg", frame)
|
|
# send_alert.SendMail("report.jpg")
|
|
alert = alert + 1
|
|
else:
|
|
alert = alert + 1
|
|
|
|
return alert
|