30 lines
736 B
Python
30 lines
736 B
Python
import numpy as np
|
|
from PIL import Image
|
|
import numpy as np
|
|
from imageio import imread
|
|
|
|
def preprocess_input(x, v2=True):
|
|
x = x.astype('float32')
|
|
x = x / 255.0
|
|
if v2:
|
|
x = x - 0.5
|
|
x = x * 2.0
|
|
return x
|
|
|
|
|
|
def _imread(image_name):
|
|
return imread(image_name)
|
|
|
|
|
|
def _imresize(image_array, size):
|
|
return np.array(Image.fromarray(image_array).resize(size))
|
|
# return imresize(image_array, size)
|
|
|
|
|
|
def to_categorical(integer_classes, num_classes=2):
|
|
integer_classes = np.asarray(integer_classes, dtype='int')
|
|
num_samples = integer_classes.shape[0]
|
|
categorical = np.zeros((num_samples, num_classes))
|
|
categorical[np.arange(num_samples), integer_classes] = 1
|
|
return categorical
|