# 从人脸图像文件中提取人脸特征存入 CSV import os import dlib from skimage import io import csv import numpy as np # 要读取人脸图像文件的路径 path_images_from_camera = "data/data_faces_from_camera/" # 1. Dlib 正向人脸检测器 detector = dlib.get_frontal_face_detector() # 2. Dlib 人脸 landmark 特征点检测器 predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat') # 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat") # 返回单张图像的 128D 特征 def return_128d_features(path_img): img_rd = io.imread(path_img) faces = detector(img_rd, 1) print("%-40s %-20s" % ("检测到人脸的图像 / Image with faces detected:", path_img), '\n') # 因为有可能截下来的人脸再去检测,检测不出来人脸了 # 所以要确保是 检测到人脸的人脸图像 拿去算特征 if len(faces) != 0: shape = predictor(img_rd, faces[0]) face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape) else: face_descriptor = 0 print("no face") return face_descriptor # 将文件夹中照片特征提取出来, 写入 CSV def return_features_mean_personX(path_faces_personX): features_list_personX = [] photos_list = os.listdir(path_faces_personX) if photos_list: for i in range(len(photos_list)): # 调用return_128d_features()得到128d特征 print("%-40s %-20s" % ("正在读的人脸图像 / Image to read:", path_faces_personX + "/" + photos_list[i])) features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i]) # print(features_128d) # 遇到没有检测出人脸的图片跳过 if features_128d == 0: i += 1 else: features_list_personX.append(features_128d) else: print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/', '\n') # 计算 128D 特征的均值 # personX 的 N 张图像 x 128D -> 1 x 128D if features_list_personX: features_mean_personX = np.array(features_list_personX).mean(axis=0) else: features_mean_personX = np.zeros(128, dtype=int, order='C') return features_mean_personX # 获取已录入的最后一个人脸序号 / get the num of latest person person_list = os.listdir("data/data_faces_from_camera/") person_num_list = [] for person in person_list: person_num_list.append(int(person.split('_')[-1])) person_cnt = max(person_num_list) with open("data/features_all.csv", "w", newline="") as csvfile: writer = csv.writer(csvfile) for person in range(person_cnt): # Get the mean/average features of face/personX, it will be a list with a length of 128D print(path_images_from_camera + "person_" + str(person + 1)) features_mean_personX = return_features_mean_personX(path_images_from_camera + "person_" + str(person + 1)) writer.writerow(features_mean_personX) print("特征均值 / The mean of features:", list(features_mean_personX)) print('\n') print("所有录入人脸数据存入 / Save all the features of faces registered into: data/features_all.csv")