import cv2 import matplotlib.pyplot as plt import numpy as np from keras.preprocessing import image def load_image(image_path, grayscale=False, target_size=None): pil_image = image.load_img(image_path, grayscale, target_size) return image.img_to_array(pil_image) def load_detection_model(model_path): # detection_model = cv2.CascadeClassifier(model_path) detection_model = cv2.dnn.readNetFromCaffe("data/data_opencv/deploy.prototxt.txt", model_path) return detection_model def detect_faces(detection_model, gray_image_array): blob = cv2.dnn.blobFromImage(cv2.resize(gray_image_array, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) detection_model.setInput(blob) return detection_model.forward() # return detection_model.detectMultiScale(gray_image_array, 1.3, 5) def draw_bounding_box(face_coordinates, image_array, color): x, y, w, h = face_coordinates cv2.rectangle(image_array, (x, y), (x + w, y + h), color, 2) def apply_offsets(face_coordinates, offsets): x, y, width, height = face_coordinates x_off, y_off = offsets return (x - x_off, x + width + x_off, y - y_off, y + height + y_off) def draw_text(coordinates, image_array, text, color, x_offset=0, y_offset=0, font_scale=2, thickness=2): x, y = coordinates[:2] cv2.putText(image_array, text, (x + x_offset, y + y_offset), cv2.FONT_HERSHEY_SIMPLEX, font_scale, color, thickness, cv2.LINE_AA) def get_colors(num_classes): colors = plt.cm.hsv(np.linspace(0, 1, num_classes)).tolist() colors = np.asarray(colors) * 255 return colors