# 摄像头实时人脸识别 import threading from datetime import datetime import numpy as np import cv2 import os import time import requests import facenet from PIL import Image, ImageDraw, ImageFont from Post import post, post_person import smile_detection start_time = 0 api_transfer = {'elder': 'old', 'employee': 'employee', 'volunteer': 'volunteer'} class Face_Recognizer: def __init__(self, detector, nn4_small2): # 模型 self.detector = detector self.nn4_small2 = nn4_small2 self.pre = datetime.now() # 用来存放所有录入人脸特征的数组 self.features_known_list = [] # 存储录入人脸名字 self.loaded = False self.name_known_cnt = 0 self.name_known_list = [] self.type_known_list = [] self.id_known_list = [] self.metadata = [] self.embedded = [] # 存储当前摄像头中捕获到的所有人脸的坐标名字 self.pos_camera_list = [] self.name_camera_list = [] self.type_camera_list = [] self.id_camera_list = [] # 存储当前摄像头中捕获到的人脸数 self.faces_cnt = 0 # 存储当前摄像头中捕获到的人脸特征 self.features_camera_list = [] # Update FPS self.fps = 0 self.frame_start_time = 0 # 读取录入人脸特征 def get_face_database(self): if self.loaded: return 1 else: if os.path.exists("data/data_faces_from_camera/"): self.metadata = facenet.load_metadata("data/data_faces_from_camera/") self.name_known_cnt = 0 for i in range(0, len(self.metadata)): for j in range(0, len(self.metadata[i])): self.name_known_cnt += 1 self.embedded = np.zeros((self.name_known_cnt * 8, 128)) for i, m in enumerate(self.metadata): for j, n in enumerate(m): for k, p in enumerate(n): img = facenet.load_image(p.image_path().replace("\\", "/")) # img = align_image(img) img = cv2.resize(img, (96, 96)) # scale RGB values to interval [0,1] img = (img / 255.).astype(np.float32) # obtain embedding vector for image self.embedded[i] = self.nn4_small2.predict(np.expand_dims(img, axis=0))[0] # self.embedded[i] = self.embedded[i] / len(m) path = p.image_path().replace("\\", "/") self.name_known_list.append(path.split('/')[-2]) self.type_known_list.append(path.split('/')[-3]) for i in range(len(self.name_known_list)): if self.type_known_list[i] == 'elder': type = 'old' elif self.type_known_list[i] == 'volunteer': type = 'employee' self.id_known_list.append( requests.get("http://zhuooyu.cn:8000/api/person/" + str(type) + "/" + str( self.name_known_list[i]) + "/").text) self.loaded = True return 1 else: print('##### Warning #####', '\n') print("'features_all.csv' not found!") print( "Please run 'get_faces_from_camera.py' before 'face_reco_from_camera.py'", '\n') print('##### End Warning #####') return 0 # 更新 FPS def update_fps(self): now = time.time() self.frame_time = now - self.frame_start_time self.fps = 1.0 / self.frame_time self.frame_start_time = now def draw_note(self, img_rd): font = cv2.FONT_ITALIC # cv2.putText(img_rd, "Face Recognizer", (20, 40), font, 1, (255, 255, 255), 1, cv2.LINE_AA) # cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(14)), (20, 100), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA) cv2.putText(img_rd, "Faces: " + str(self.faces_cnt), (20, 40), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA) # cv2.putText(img_rd, "Q: Quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA) def draw_name(self, img_rd): # 在人脸框下面写人脸名字 img_with_name = img_rd font = ImageFont.truetype("simsun.ttc", 30, index=1) img = Image.fromarray(cv2.cvtColor(img_rd, cv2.COLOR_BGR2RGB)) draw = ImageDraw.Draw(img) for i in range(self.faces_cnt): if self.name_camera_list[i] != 'unknown': # cv2.putText(img_rd, self.name_camera_list[i], self.pos_camera_list[i], font, 0.8, (0, 255, 255), 1, cv2.LINE_AA) draw.text(xy=self.pos_camera_list[i], text=self.name_camera_list[i], font=font) img_with_name = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) return img_with_name # 修改显示人名 def modify_name_camera_list(self): # TODO 数据库 ID # Default known name: 1, 14, person_3 self.name_known_list[0] = '1'.encode('utf-8').decode() self.name_known_list[1] = 'Tony Blair'.encode('utf-8').decode() # self.name_known_list[14] = '唐保生'.encode('utf-8').decode() # self.name_known_list[3] = '1'.encode('utf-8').decode() # self.name_known_list[4] ='xx'.encode('utf-8').decode() # 进行人脸识别和微笑检测 def process(self, img_rd): img_with_name = img_rd data_type_three = { 'old': 0, 'employee': 0, 'volunteer': 0, 'stranger': 0 } # 读取所有人脸 if self.get_face_database(): cv2.putText(img_rd, "Faces: " + str(self.faces_cnt), (20, 40), cv2.FONT_ITALIC, 0.8, (0, 255, 0), 1, cv2.LINE_AA) # cv2.putText(img_rd, str(datetime.now()), (120, 40), cv2.FONT_ITALIC, 0.8, (0, 255, 0), 1, # cv2.LINE_AA) self.features_camera_list = [] self.faces_cnt = 0 self.pos_camera_list = [] self.name_camera_list = [] self.type_camera_list = [] self.id_camera_list = [] (h, w) = img_rd.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(img_rd, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) self.detector.setInput(blob) faces = self.detector.forward() # 检测到人脸 if faces.shape[2] != 0: # 遍历捕获到的图像中所有的人脸 for k in range(0, faces.shape[2]): # 计算矩形框大小 confidence = faces[0, 0, k, 2] # filter out weak detections by ensuring the `confidence` is # greater than the minimum confidence if confidence < 0.5: continue self.faces_cnt += 1 # 让人名跟随在矩形框的上方 # 确定人名的位置坐标 # 先默认所有人不认识,是 unknown self.name_camera_list.append("unknown") self.type_camera_list.append('unknown') self.id_camera_list.append('unknown') # 每个捕获人脸的名字坐标 box = faces[0, 0, k, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") self.pos_camera_list.append(tuple( [int(startX + 5), int(startY - 30)])) # height = (endY - startY) # width = (endX - startX) img_blank = img_rd[startY:endY, startX:endX] img_blank = img_blank[..., ::-1] try: # for ii in range(height): # for jj in range(width): # img_blank[ii][jj] = img_rd[startY + ii][startX + jj] img = cv2.resize(img_blank, (96, 96)) img = (img / 255.).astype(np.float32) img = self.nn4_small2.predict(np.expand_dims(img, axis=0))[0] # 对于某张人脸,遍历所有存储的人脸 e_distance_list = [] for i in range(0, len(self.embedded)): e_distance_list.append(facenet.distance(self.embedded[i], img)) similar_person_num = e_distance_list.index(min(e_distance_list)) # print(min(e_distance_list)) if min(e_distance_list) < 0.58: self.name_camera_list[k] = self.id_known_list[similar_person_num % 8] self.type_camera_list[k] = self.type_known_list[similar_person_num % 8] self.id_camera_list[k] = self.name_known_list[similar_person_num % 8] data_type_three[api_transfer[self.type_camera_list[k]]] += 1 cv2.rectangle(img_rd, tuple([startX, startY]), tuple([endX, endY]), (0, 255, 0), 2) cv2.rectangle(img_rd, tuple([startX, startY - 35]), tuple([endX, startY]), (0, 255, 0), cv2.FILLED) img_with_name = self.draw_name(img_rd) if self.type_camera_list[k] == 'elder': mode = smile_detection.smile_detect(img_blank) if mode == 'happy': # print("happy") cv2.rectangle(img_with_name, tuple([startX, startY - 70]), tuple([endX, startY - 35]), (0, 215, 255), cv2.FILLED) cv2.putText(img_with_name, 'happy', (startX + 5, startY - 45), cv2.FONT_ITALIC, 1, (255, 255, 255), 1, cv2.LINE_AA) time_snap = datetime.now() cv2.imwrite('smile_detection' + str(time_snap).replace(':','') + '.jpg', img_with_name) if (datetime.now() - self.pre).total_seconds() > 5: t = threading.Thread(target=post(elder_id=self.id_camera_list[k], event=0, imagePath='smile_detection' + str( time_snap).replace(':','') + '.jpg')) t.setDaemon(False) t.start() self.pre = datetime.now() # print("May be person " + str(self.name_known_list[similar_person_num])) elif min(e_distance_list) > 0.75: data_type_three['stranger'] += 1 self.name_camera_list[k] = '陌生人' cv2.rectangle(img_rd, tuple([startX, startY]), tuple([endX, endY]), (0, 0, 255), 2) cv2.rectangle(img_rd, tuple([startX, startY - 35]), tuple([endX, startY]), (0, 0, 255), cv2.FILLED) img_with_name = self.draw_name(img_rd) time_snap = datetime.now() cv2.imwrite('stranger_detection' + str(time_snap).replace(':','') + '.jpg', img_with_name) if (datetime.now() - self.pre).total_seconds() > 5: t = threading.Thread( target=post(event=2, imagePath='stranger_detection' + str(time_snap).replace(':','') + '.jpg')) t.setDaemon(False) t.start() self.pre = datetime.now() else: pass except: continue else: img_with_name = img_rd # 更新 FPS / Update stream FPS # self.update_fps() if (datetime.now() - self.pre).total_seconds() > 5: post_person(data_type_three) self.pre = datetime.now() return img_with_name