Files
Happy-Reconstruction/Classes/Calibrator.cpp

339 lines
11 KiB
C++

#include "Calibrator.h"
#include "structured_light.h"
#include "CalibrationData.h"
#include <fstream>
#include <QtCore/QList>
Calibrator::Calibrator()
{
}
Calibrator::~Calibrator()
{
}
void Calibrator::addFrameSequence(std::vector<Mat> &frameSeq)
{
int n = frameSeqs.size();
frameSeqs.resize(n+1);
std::vector<Mat> &frame = frameSeqs[n];
for(int i = 0; i < frameSeq.size(); i++)
{
frame.push_back(frameSeq[i]);
}
std::cout <<"Calibrator::addFrameSequence : frame.size(): "<< frame.size() << std::endl;
}
void Calibrator::reset()
{
frameSeqs.clear();
board_corners.clear();
projector_corners.clear();
pattern_list.clear();
}
void Calibrator::setBoardRows(int rows) {
board_rows = rows;
board_size = Size(board_rows, board_cols);
}
void Calibrator::setBoardCols(int cols) {
board_cols = cols;
board_size = Size(board_rows, board_cols);
}
void Calibrator::setCornerSize(double cornerSize) {
dot_dis = cornerSize;
corner_size = Size2f(cornerSize, cornerSize);
}
void Calibrator::setDotDiameter(double dotDiameter) {
dot_diameter = dotDiameter;
}
void Calibrator::setCalibBoard(unsigned board) {
board_type = board;
}
CalibrationData* Calibrator::calibrate()
{
CalibrationData *res = new CalibrationData();
// detect corners ////////////////////////////////////
for(int i = 0; i < frameSeqs.size(); i++)
{
std::vector<Point2f> corners = extract_board_corners( frameSeqs[i][0] );
board_corners.push_back(corners);
// std::cout<<i<<" corners: "<<corners.size()<<std::endl;
// for(int j = 0; j < corners.size(); j++) {
// std::cout<<corners[j]<<std::endl;
// }
}
// collect projector correspondences
std::vector<Point2f> pcorners;
for(int i = 0; i < frameSeqs.size(); i++)
{
std::vector<Point2f> const& corners = board_corners[i];
Mat pattern_image;
Mat min_max_image;
if(corners.size()==0)
{
projector_corners.push_back(pcorners);
pattern_list.push_back(pattern_image);
continue;
}
if(!decode_gray_set(i , pattern_image ,min_max_image))
{
projector_corners.push_back(pcorners);
pattern_list.push_back(pattern_image);
continue;
}
pattern_list.push_back(pattern_image);
for (std::vector<Point2f>::const_iterator iter=corners.begin(); iter!=corners.end(); iter++)
{
const Point2f & p = *iter;
Point2f q;
//find an homography around p
unsigned WINDOW_SIZE = 30;
std::vector<Point2f> img_points , proj_points;
if (p.x>WINDOW_SIZE && p.y>WINDOW_SIZE && p.x+WINDOW_SIZE<pattern_image.cols && p.y+WINDOW_SIZE<pattern_image.rows)
{
for (unsigned h=p.y-WINDOW_SIZE; h<p.y+WINDOW_SIZE; h++)
{
register const Vec2f * row = pattern_image.ptr<Vec2f>(h);
register const Vec2b * min_max_row = min_max_image.ptr<Vec2b>(h);
//Vec2f * out_row = out_pattern_image.ptr<Vec2f>(h);
for (unsigned w=p.x-WINDOW_SIZE; w<p.x+WINDOW_SIZE; w++)
{
const Vec2f & pattern = row[w];
const Vec2b & min_max = min_max_row[w];
//Vec2f & out_pattern = out_row[w];
if (std::isnan(pattern[0])>0 || std::isnan(pattern[1])>0)
{
continue;
}
if ((min_max[1]-min_max[0]) < static_cast<int>(threshold))
{ //apply threshold and skip
continue;
}
img_points.push_back(Point2f(w, h));
proj_points.push_back(Point2f(pattern));
//out_pattern = pattern;
}
}
Mat H = findHomography(img_points , proj_points, RANSAC);
// std::cout << " H:\n" << H << std::endl;
Point3d Q = Point3d(Mat(H*Mat(Point3d(p.x , p.y , 1.0))));
q = Point2f(Q.x/Q.z ,Q.y/Q.z);
// jiuzheng
// q.y += 118;
pcorners.push_back(q);
}
else {
pcorners.clear();
break;
}
}
std::cout<<i<<" pcorners: "<<pcorners.size()<<std::endl;
for(int j = 0; j < pcorners.size(); j++) {
std::cout<<pcorners[j]<<std::endl;
}
projector_corners.push_back(pcorners);
pcorners.clear();
}
//generate world object coordinates
unsigned count = 0;
for(int i = 0; i < frameSeqs.size(); i++)
{
if(board_corners[i].size() && projector_corners[i].size())
{
count++;
}
}
std::vector<Point3f> world_corners;
for (int h=0; h<board_size.height; h++)
{
for (int w=0; w<board_size.width; w++)
{
world_corners.push_back(Point3f(corner_size.width * w, corner_size.height * h , 0.f));
}
}
std::vector<std::vector<Point3f> > objectPoints;
objectPoints.reserve(count);
for (unsigned i=0; i<count; i++)
{
objectPoints.push_back(world_corners);
}
//generate world object coordinates
std::vector<Point3f> world_corners_p;
for (int h=0; h<board_size.height; h++)
{
for (int w=0; w<board_size.width; w++)
{
world_corners_p.push_back(Point3f(corner_size.width * w , corner_size.height * h ,0.f));
}
}
std::vector<std::vector<Point3f> > objectPoints_p;
objectPoints_p.reserve(count);
for (unsigned i=0; i<count; i++)
{
objectPoints_p.push_back(world_corners_p);
}
//collect projector correspondences
projector_corners.resize(count);
pattern_list.resize(count);
int cal_flags = 0
//+ CALIB_FIX_K1
//+ CALIB_FIX_K2
//+ CALIB_ZERO_TANGENT_DIST
+ CALIB_FIX_K3
;
//calibrate the camera ////////////////////////////////////
std::vector<Mat> cam_rvecs , cam_tvecs;
int cam_flags = cal_flags;
Size imageSize = frameSeqs[0][0].size();
res->cam_error = calibrateCamera(objectPoints , board_corners , imageSize , res->Kc , res->kc ,cam_rvecs , cam_tvecs);
std::cout<<"calibrate the camera !"<<std::endl;
//calibrate the projector ////////////////////////////////////
std::vector<Mat> proj_rvecs , proj_tvecs;
int proj_flags = cal_flags;
Size projector_size(912, 1140);
res->proj_error = calibrateCamera(objectPoints_p , projector_corners, projector_size , res->Kp , res->kp , proj_rvecs , proj_tvecs);
std::cout<<"calibrate the projector !"<<std::endl;
//stereo calibration
Mat E, F;
res->stereo_error = stereoCalibrate(objectPoints , board_corners , projector_corners ,
res->Kc , res->kc , res->Kp ,res->kp ,imageSize /*ignored*/ ,
res->Rp , res->Tp , E , F );
// res->stereo_error = stereoCalibrate(objectPoints , board_corners , projector_corners , res->Kc , res->kc , res->Kp ,res->kp ,imageSize /*ignored*/ , res->Rp , res->Tp , E , F ,
// TermCriteria(TermCriteria::COUNT + TermCriteria::EPS ,50 ,DBL_EPSILON) ,
// CALIB_FIX_INTRINSIC /*CALIB_USE_INTRINSIC_GUESS + cal_flags*/);
std::cout<<"stereo calibration !"<<std::endl;
FileStorage fsc("rtc.xml", FileStorage::WRITE);
FileStorage fsp("rtp.xml", FileStorage::WRITE);
// objectPoints projector_corners board_corners
std::ofstream opout("objectPoints.txt");
std::ofstream pcout("projector_corners.txt");
std::ofstream ccout("board_corners.txt");
for (int i = 0; i < objectPoints.size(); i++) {
fsc << "R" + std::to_string(i) << Mat(cam_rvecs[i]);
fsc << "T" + std::to_string(i) << Mat(cam_tvecs[i]);
fsp << "R" + std::to_string(i) << Mat(proj_rvecs[i]);
fsp << "T" + std::to_string(i) << Mat(proj_tvecs[i]);
for (int j = 0; j < objectPoints[i].size(); j++) {
opout << objectPoints[i][j] << std::endl;
pcout << projector_corners[i][j] << std::endl;
ccout << board_corners[i][j] << std::endl;
}
}
opout.close();
pcout.close();
ccout.close();
fsc.release();
fsp.release();
return res;
}
std::vector<Point2f> Calibrator::extract_board_corners(Mat &gray_image)
{
std::vector<Point2f> corners;
int image_scale = 1;
if (gray_image.rows<1)
{
return corners;
}
Size imageSize = gray_image.size();
if (imageSize.width>1024)
{
image_scale = imageSize.width/1024;
}
Mat small_img;
if (image_scale>1)
{
resize(gray_image , small_img , Size(gray_image.cols/image_scale , gray_image.rows/image_scale));
}
else
{
small_img = gray_image;
}
if(board_type == Chessboard) {
findChessboardCorners(small_img, board_size, corners);
}
else if(board_type == Circular) {
findCirclesGrid(small_img, board_size, corners);
}
if (corners.size())
{
for (std::vector<Point2f>::iterator iter=corners.begin(); iter!=corners.end(); iter++)
{
*iter = image_scale*(*iter);
}
cornerSubPix(gray_image , corners , Size(11 , 11) , Size(-1 , -1) ,
TermCriteria(TermCriteria::EPS + TermCriteria::MAX_ITER, 30 , 0.1));
}
return corners;
}
bool Calibrator::decode_gray_set(int ind , Mat & pattern_image, Mat & min_max_image)
{
if (ind >= frameSeqs.size())
{ //out of bounds
return false;
}
//estimate direct component
//b = config.value("robust_estimation/b" DEFAULT_B).toFloat();
std::vector<Mat> images;
// QList<unsigned> direct_component_images(QList<unsigned>() << 15 << 16 << 17 << 18 << 35 << 36 << 37 << 38);
int total_images = frameSeqs[ind].size();
int total_patterns = total_images/2 - 1;
const int direct_light_count = 4;
const int direct_light_offset = 4;
QList<unsigned> direct_component_images;
for (unsigned i=0; i<direct_light_count; i++)
{
int index = total_images - total_patterns - direct_light_count - direct_light_offset + i + 1;
direct_component_images.append(index);
direct_component_images.append(index + total_patterns);
}
foreach (unsigned i , direct_component_images)
{
images.push_back(frameSeqs[ind][i]);
}
Mat direct_light = sl::estimate_direct_light(images, b);
//m = config.value("robust_estimation/m" DEFAULT_M).toUInt();
// return sl::decode_pattern(frameSeqs[ind] , pattern_image , min_max_image , sl::RobustDecode|sl::GrayPatternDecode , direct_light, m);
Size projector_size(912, 1140);
bool rv = sl::decode_pattern(frameSeqs[ind], pattern_image, min_max_image, projector_size, sl::RobustDecode|sl::GrayPatternDecode, direct_light, m);
return rv;
}