

POINT GREY

Grasshopper2 GS2- GE

Technical Reference Manual

Version 1.3

Revised 9/27/2011

Point Grey Research® Inc.

12051 Riverside Way • Richmond, BC • Canada • V6W 1K7 • T (604) 242-9937 • www.ptgrey.com

FCC Compliance

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesirable operation.

Hardware Warranty

Point Grey Research®, Inc. (Point Grey) warrants to the Original Purchaser that the Camera Module provided with this package is guaranteed to be free from material and manufacturing defects for a period of two (2) years. Should a unit fail during this period, Point Grey will, at its option, repair or replace the damaged unit. Repaired or replaced units will be covered for the remainder of the original equipment warranty period. This warranty does not apply to units that, after being examined by Point Grey, have been found to have failed due to customer abuse, mishandling, alteration, improper installation or negligence. If the original camera module is housed within a case, removing the case for any purpose other than to remove the protective glass or filter over the sensor voids this warranty. This warranty does not apply to damage to any part of the optical path resulting from removal or replacement of the protective glass or filter over the camera, such as scratched glass or sensor damage.

Point Grey Research, Inc. expressly disclaims and excludes all other warranties, express, implied and statutory, including, but without limitation, warranty of merchantability and fitness for a particular application or purpose. In no event shall Point Grey Research, Inc. be liable to the Original Purchaser or any third party for direct, indirect, incidental, consequential, special or accidental damages, including without limitation damages for business interruption, loss of profits, revenue, data or bodily injury or death.

WEEE

The symbol indicates that this product may not be treated as household waste. Please ensure this product is properly disposed as inappropriate waste handling of this product may cause potential hazards to the environment and human health. For more detailed information about recycling of this product, please contact Point Grey Research.

Trademarks

Point Grey Research, PGR, the Point Grey Research, Inc. logo, Chameleon, Digiclops, Dragonfly, Dragonfly Express, Firefly, Flea, FlyCapture, Gazelle, Grasshopper, Ladybug, Triclops and Zebra are trademarks or registered trademarks of Point Grey Research, Inc. in Canada and other countries.

Table of Contents

1 Introduction	10
1.1 Using This Manual	10
1.2 GS2-GE-20S4 Specifications	11
1.2.1 General Features and Specifications	11
1.2.2 GS2-GE-20S4 Sensor Response	12
1.3 GS2-GE-50S5 Specifications	14
1.3.1 General Features and Specifications	14
1.3.2 GS2-GE-50S5 Sensor Response	15
1.4 Analog-to-Digital Conversion	16
2 General Camera Operation	17
2.1 Handling Precautions and Camera Care	17
2.1.1 Case Temperature and Heat Dissipation	17
2.2 Powering the Camera	18
2.3 Configuring the IP Address	18
2.4 Configuring Other Network Settings	19
2.4.1 Stream Channel Packet Size	19
2.4.2 Stream Channel Packet Delay	20
2.4.3 Heartbeat	20
2.4.3.1 Heartbeat Timeout	21
2.4.3.2 Heartbeat Disable	21
2.4.4 Determining Bandwidth Requirements	21
2.4.4.1 Bandwidth Requirements for Multiple Cameras	22
2.5 Configuring Camera Drivers	23
2.6 Managing Camera Settings	23
2.6.1 Using the Control and Status Registers	23
2.6.1.1 IIDC 1394-Compatible Registers	23
2.6.1.2 Using the Inquiry Registers	24

2.6.1.3 Using the Absolute Value Registers.....	24
2.6.1.4 GigE Vision Bootstrap Registers.....	25
2.6.2 Operating System and Software Support.....	25
2.6.2.1 FlyCap Demo Program.....	25
2.6.2.2 Custom Applications Built with the FlyCapture API.....	25
2.6.2.3 GenICam Applications.....	25
2.6.2.4 Recommended Hardware and Software Requirements.....	25
2.6.2.5 Macintosh and Linux OS Support.....	26
2.6.3 User Configuration Sets.....	26
2.6.3.1 Memory Channel Registers.....	27
2.7 Camera Error and Status Monitoring.....	29
2.7.1 Main Status Indicator LED.....	29
2.7.1.1 LED Behavior During Camera Power-up and Initialization.....	29
2.7.1.2 LED Behavior During Regular Camera Operation.....	29
2.7.2 GigE Connector Indicator LEDs.....	30
2.7.2.1 LED Behavior During Camera Power-up and Initialization.....	30
2.7.2.2 LED Behavior during Regular Camera Operation.....	30
2.7.3 General Status Monitoring.....	31
2.7.4 Error Status Registers.....	33
2.7.5 Device Information.....	34
2.8 Non-Volatile Flash Memory.....	36
2.9 Upgrading Camera Firmware.....	37
3 Camera Interface and Connectors.....	38
3.1 GigE Connector.....	38
3.2 Cables.....	38
3.3 GigE Network Interface Card.....	38
3.4 General Purpose Input/Output (GPIO).....	38
3.4.1 GPIO Electrical Characteristics.....	39
3.4.2 GPIO0 (Opto-Isolated Input) Circuit.....	39

3.4.3 GPIO1 (Opto-Isolated Output) Circuit	40
3.4.4 GPIO 2 / 3 (Bi-Directional) Circuit	41
3.4.4.1 Input Side	41
3.4.4.2 Output Side	41
4 Video Formats, Modes and Frame Rates	43
4.1 Binning and ROI Modes	43
4.1.1 Video Mode Descriptions	44
4.2 Calculating Maximum Possible Frame Rate	45
4.3 Supported Formats, Modes and Frame Rates	45
4.3.1 GS2-GE-20S4 Video Modes and Frame Rates	46
4.3.2 GS2-GE-50S5 Video Modes and Frame Rates	48
4.4 Configuring Video Format and Mode Using the Camera Registers	49
5 Image Acquisition and Transmission	51
5.1 Video Streaming	51
5.2 High Dynamic Range (HDR) Imaging	52
5.3 Asynchronous Triggering	53
5.3.1 External Trigger Timing	53
5.3.2 Minimum Trigger Pulse Length	54
5.3.3 Maximum Frame Rate in External Trigger Mode	54
5.3.4 Camera Behavior Between Triggers	54
5.3.5 Changing Video Modes While Triggering	55
5.3.6 Supported Trigger Modes	55
5.3.6.1 Trigger_Mode_0 (“Standard External Trigger Mode”)	55
5.3.6.2 Trigger_Mode_1 (“Bulb Shutter Mode”)	56
5.3.6.3 Trigger_Mode_3 (“Skip Frames Mode”)	56
5.3.6.4 Trigger_Mode_4 (“Multiple Exposure Preset Mode”)	57
5.3.6.5 Trigger_Mode_5 (“Multiple Exposure Pulse Width Mode”)	57
5.3.6.6 Trigger_Mode_13 (“Low SmearTrigger Mode”)	58
5.3.6.7 Trigger_Mode_14 (“Overlapped Exposure / Readout Mode”)	58

5.3.6.8 Trigger_Mode_15 (“Multi-Shot Trigger Mode”).....	59
5.3.7 Example: Asynchronous Hardware Triggering (Using the Camera Registers).....	60
5.3.8 Example: Asynchronous Hardware Triggering (Using the FlyCapture API).....	62
5.3.9 Asynchronous Software Triggering.....	62
5.3.10 Asynchronous Trigger Registers.....	63
5.4 External Device Control.....	66
5.4.1 Programmable Strobe Output.....	66
5.4.1.1 Example: Setting a GPIO Pin to Strobe (Using the Camera Registers).....	66
5.4.1.2 Example: Setting a GPIO Pin to Strobe (Using the FlyCapture API).....	69
5.4.1.3 Strobe Signal Output Registers.....	69
5.4.2 Pulse Width Modulation (PWM).....	73
5.5 On-Camera Frame Buffer.....	76
5.5.1 Retransmitting an Image in External Trigger Mode.....	78
5.5.2 Storing images for later transmission.....	79
5.6 Test Pattern.....	80
6 Imaging Parameters and Control.....	82
6.1 Black Level.....	82
6.1.1 Example: Setting Brightness Using the FlyCapture API.....	82
6.2 Exposure.....	83
6.2.1 Extended Shutter Times.....	84
6.2.2 Example: Setting Shutter Using the FlyCapture API.....	86
6.3 Gain.....	86
6.3.1 Example: Setting Gain Using the FlyCapture API.....	87
6.4 Auto Exposure.....	87
6.4.1 Example Setting Auto Exposure Using the FlyCapture2 API.....	90
6.5 Gamma and Lookup Table.....	91
6.5.1 Example: Setting Gamma Using the FlyCapture API.....	96
6.6 Saturation.....	96
6.6.1 Example: Setting Saturation Using the FlyCapture API.....	97

6.7 Hue	97
6.7.1 Example: Setting Hue Using the FlyCapture API.....	98
6.8 Sharpness.....	98
6.8.1 Example: Setting Sharpness Using the FlyCapture API.....	99
6.9 White Balance.....	99
6.9.1 Example: Setting White Balance Using the FlyCapture API.....	101
6.10 Bayer Color Processing.....	102
6.10.1 Accessing Raw Bayer Data.....	102
6.11 Image Flip / Mirror.....	104
6.12 Embedded Image Information.....	104
6.13 Pixel Defect Correction.....	106
7 Camera Mechanical Properties.....	108
7.1 Physical Description.....	108
7.2 Camera Dimensions.....	108
7.3 Tripod Adapter Dimensions.....	110
7.4 Lens Mount Dimensions.....	110
7.5 Dust Protection.....	111
7.6 Mounting.....	112
7.6.1 Using the Case.....	112
7.6.2 Using the Tripod Adapter.....	112
7.7 Infrared Cut-Off Filters.....	112
8 Troubleshooting and Support.....	114
8.1 Technical Support Resources.....	114
8.2 Status Indicator LEDs.....	114
8.3 Common Image Sensor Artifacts.....	115
8.3.1 White Blemish Pixels.....	115
8.3.2 Vertical Smear.....	115
8.3.3 Dead Pixels.....	115
8.4 Error Status Registers.....	115

Appendix A: General Register Information	116
Appendix B: Inquiry Registers	120
Appendix C: Video Mode Control and Status Registers	129
Appendix D: Absolute Value Registers	134
Appendix E: GenICam Features	139
Appendix F: GigE Vision Bootstrap Registers	142
Appendix G: Contacting Point Grey Research	144
Appendix H: Revision History	145
Index	146

List of Tables

Table 2.1: CSR Mode Control Descriptions.....	24
Table 2.2: LED Behavior During Power-up and Initialization.....	29
Table 2.3: LED Behavior During IP Connection.....	29
Table 2.4: LED Behavior During Regular Camera Operation.....	29
Table 2.5: GigE Connector LED Behavior.....	30
Table 3.1: GPIO pin assignments (as shown looking at rear of camera).....	39
Table 4.1: Supported video formats and modes for GS2-GE-20S4.....	47
Table 4.2: Supported video formats and modes for GS2-GE-50S5.....	49
Table C.1: Inquiry Register Offset Addresses.....	129

List of Figures

Figure 2.1: Point Grey GigE Configurator.....	19
Figure 3.1: Optical input circuit.....	40
Figure 3.2: Optical output circuit.....	40
Figure 3.3: Figure 4: GPIO2 / 3 Circuit.....	41
Figure 4.1: 2x Vertical and 2x Horizontal Binning.....	43
Figure 5.1: External trigger timing characteristics.....	54
Figure 5.2: Relationship Between External Triggering and Video Mode Change Request	55

Figure 5.3: Trigger_Mode_0 (“Standard External Trigger Mode”)	56
Figure 5.4: Trigger_Mode_1 (“Bulb Shutter Mode”)	56
Figure 5.5: Trigger_Mode_3 (“Skip Frames Mode”)	57
Figure 5.6: Trigger_Mode_4 (“Multiple Exposure Preset Mode”)	57
Figure 5.7: Trigger_Mode_5 (“Multiple Exposure Pulse Width Mode”)	58
Figure 5.8: Trigger_Mode_13 (“Low Smear Trigger Mode”)	58
Figure 5.9: Trigger_Mode_14 (“Overlapped Exposure / Readout Mode”)	59
Figure 5.10: Trigger_Mode_15 (“Multi-Shot Trigger Mode”)	60
Figure 5.11: Software trigger timing	63
Figure 5.12: Test pattern sample image	80
Figure 6.1: Example Bayer tile pattern	102
Figure 7.1: Camera Dimensional Diagram	109
Figure 7.2: Tripod Adapter Dimensional Diagram	110
Figure 7.3: IR filter transmittance graph	112

1 Introduction

The fully redesigned Grasshopper2 camera series is the next generation version of the high performance Grasshopper, featuring a GigE Vision digital interface, enhanced opto-isolated general purpose I/O and improved imaging performance.

All model-specific information presented in this manual reflects functionality available in firmware version 1.21.3.

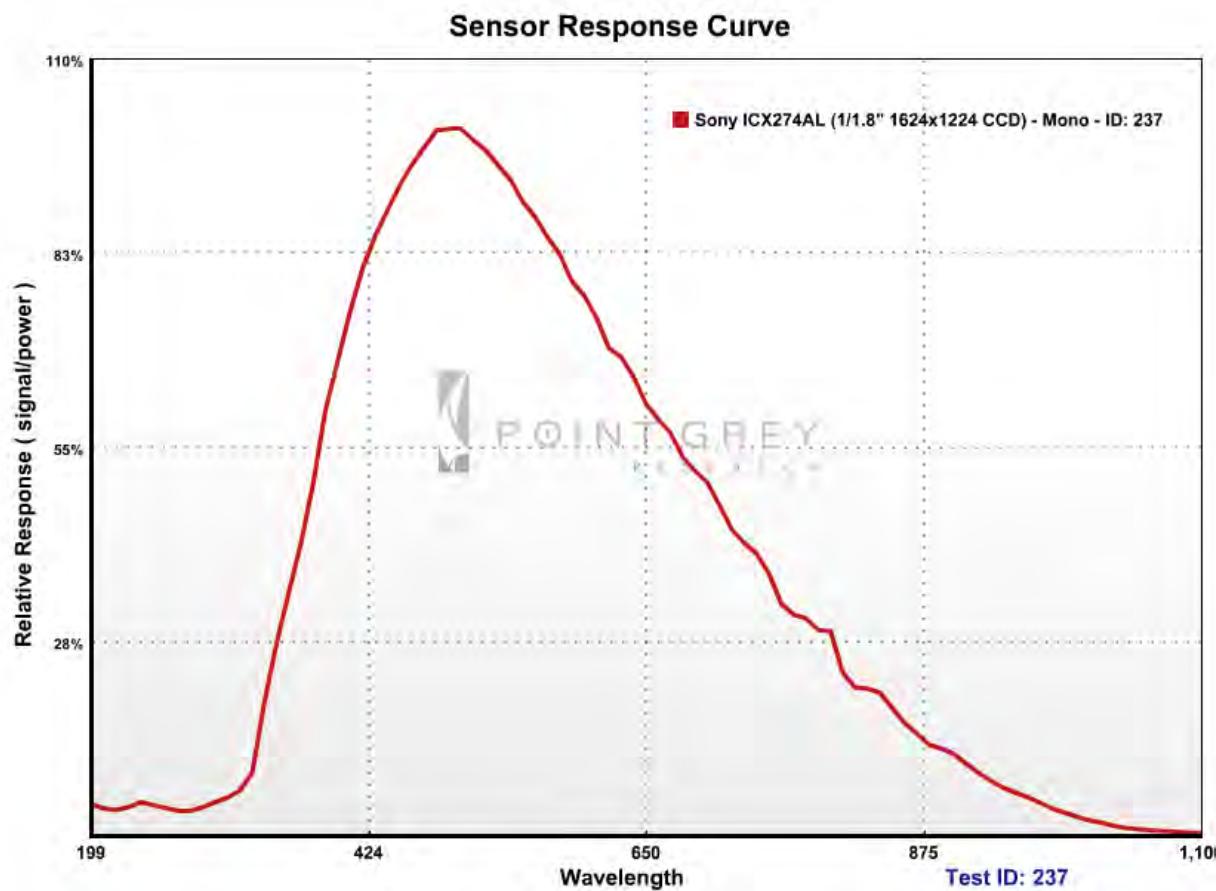
*To check the camera firmware version, consult our knowledge base:
www.ptgrey.com/support/kb/index.asp?a=4&q=94.*

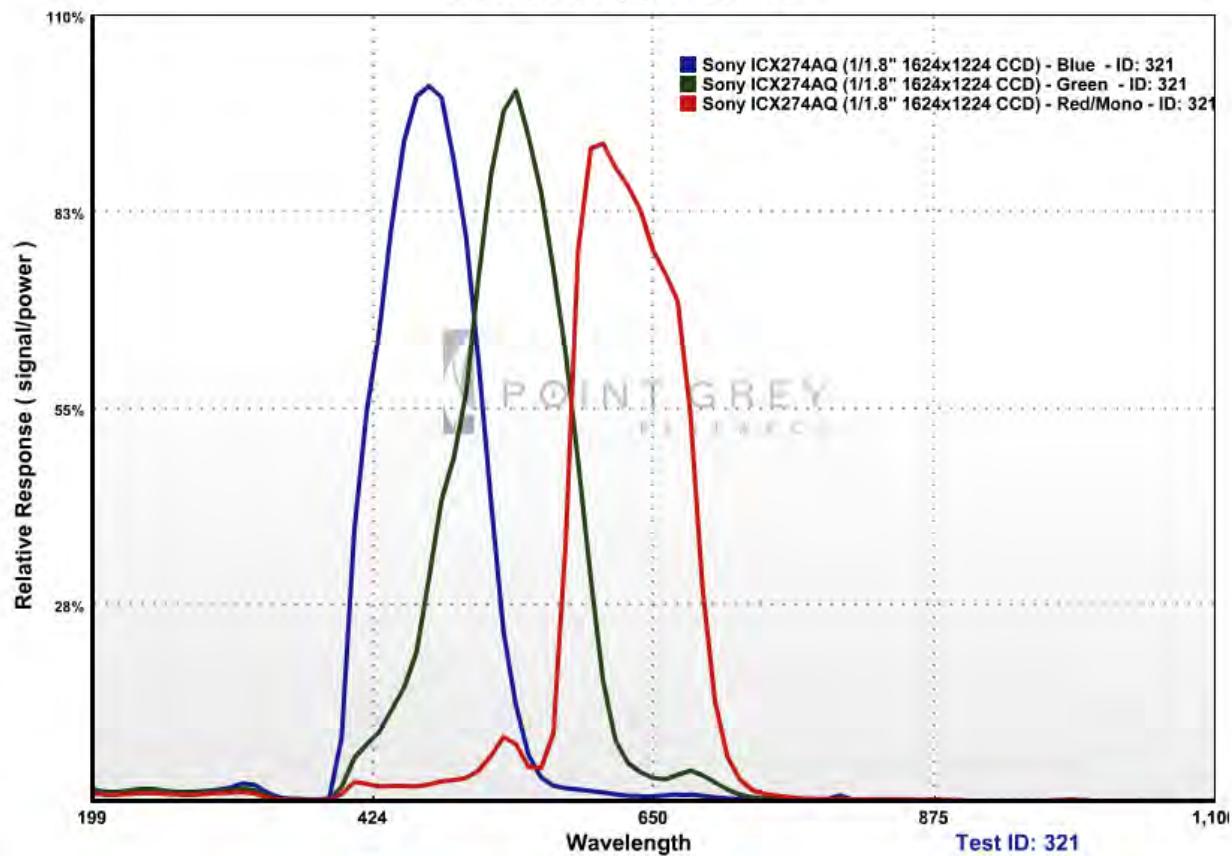
1.1 Using This Manual

This manual provides the user with a detailed specification of the camera system. The reader should be aware that the camera system is complex and dynamic – if any errors or omissions are found during experimentation, please contact us. (See Appendix G: Contacting Point Grey Research on page 144.)

This document is subject to change without notice.

1.2 GS2-GE-20S4 Specifications


1.2.1 General Features and Specifications


Imaging Sensor	Sony® ICX274 1/1.8" progressive scan CCD
Max Pixels	1624 (H) x 1224 (V)
Pixel Size	4.4 µm x 4.4 µm
Pixel Clock Frequency	66.67 MHz maximum
A/D Converter	AD9970 14-bit
Max FPS at Max Resolution	29 FPS (1600x1200 at 30 FPS)
Video Data Output	8, 12, 16 and 24-bit digital data
Partial Image Modes	Pixel binning and region of interest modes
Gain	Automatic/Manual/One-Push Gain modes
	-2.6 dB to 24 dB
Exposure	Automatic/Manual/One-Push modes
	0.03 ms to 32 seconds
Gamma	0.50 to 4.00
Full Well Depth	8390 e- at zero gain
Peak QE Wavelength	<tbd> nm
Peak QE Value	<tbd> %
Signal To Noise Ratio	62 dB
Dark Noise	5.17 e-/s at zero gain
Dark Current	52.80 e-/s at zero gain
Read Noise	6.47 e- at zero gain
Trigger Modes	IIDC Trigger Modes 0, 1, 3, 4, 5, 14 and 15 Reduced smear Mode 13
Lens Mount	C-mount
Interfaces	8-pin RJ-45 Gigabit Ethernet jack for camera control and video data transmission
	8-pin HR25 female GPIO for power, trigger and strobe
Camera Specification	GigE Vision v1.2
Power Requirements	Voltage: 12-24V Power: < 4.7 W
Dimensions	44 (W) mm x 29 (H) mm x 58 (L) mm (without optics)
Mass	86 grams (without optics)
Emissions Compliance	CE, FCC, RoHS

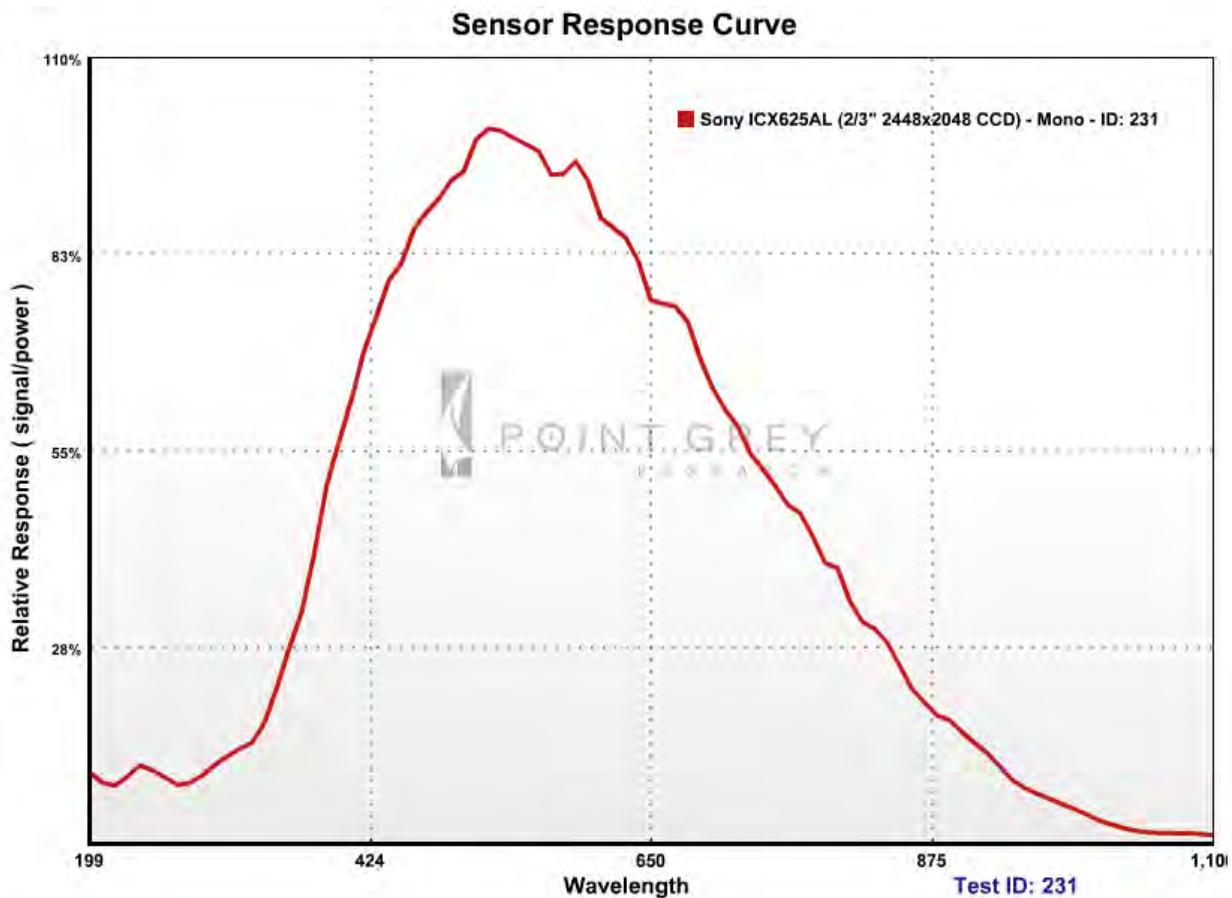
Operating Temperature	Commercial grade electronics rated from 0° to 45° C
Operating Relative Humidity	20 to 80% (no condensation)
Storage Temperature	-30° to 60°C
Storage Relative Humidity	20 to 95% (no condensation)
Warranty	Two years

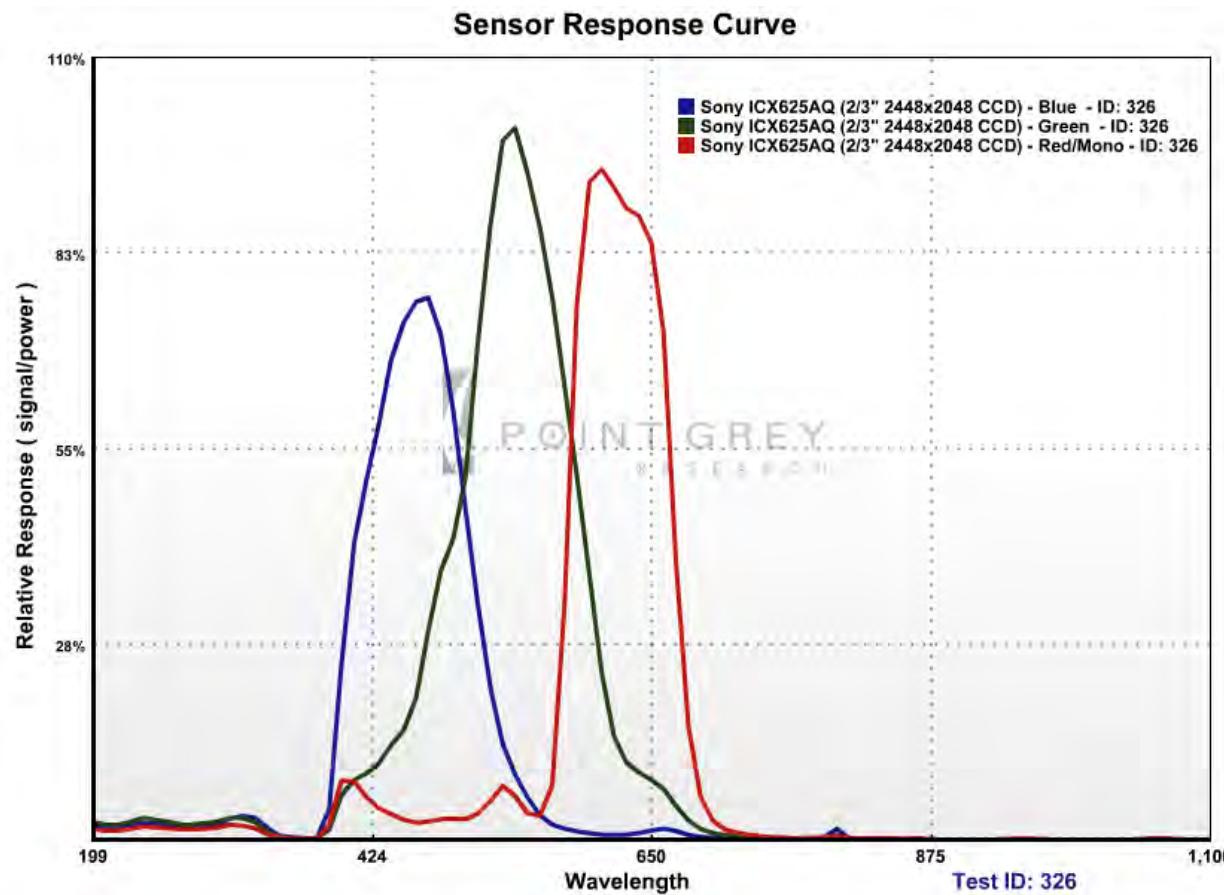
1.2.2 GS2-GE-20S4 Sensor Response

GS2-GE-20S4M (Mono)

GS2-GE-20S4C (Color)**Sensor Response Curve**

1.3 GS2-GE-50S5 Specifications


1.3.1 General Features and Specifications


Imaging Sensor	Sony® ICX625 2/3" progressive scan CCD
Max Pixels	2448 (H) x 2048 (V)
Pixel Size	3.45 µm x 3.45 µm
Pixel Clock Frequency	60 MHz
A/D Converter	AD9977 14-bit, dual-channel
Max FPS at Max Resolution	15 FPS
Video Data Output	8, 12, 16 and 24-bit digital data
Partial Image Modes	Pixel binning and region of interest modes
Gain	Automatic/Manual/One-Push Gain modes
	-2.6 dB to 24 dB
Exposure	Automatic/Manual/One-Push modes
	0.03 ms to 32 seconds
Gamma	0.50 to 4.00
Full Well Depth	7300 e- at zero gain
Peak QE Wavelength	<tbd> nm
Peak QE Value	<tbd> %
Signal To Noise Ratio	57 dB
Dark Noise	5.48 e-/s at zero gain
Dark Current	47.10 e-/s at zero gain
Read Noise	10.03 e- at zero gain
Trigger Modes	IIDC Trigger Modes 0, 1, 3, 4, 5, 14 and 15 Reduced smear Mode 13
Lens Mount	C-mount
Interfaces	8-pin RJ-45 Gigabit Ethernet jack for camera control and video data transmission 8-pin HR25 female GPIO for power, trigger and strobe
Camera Specification	GigE Vision v1.2
Power Requirements	Voltage: 12-24V Power: < 4.7 W
Dimensions	44 (W) mm x 29 (H) mm x 58 (L) mm (without optics)
Mass	86 grams (without optics)
Emissions Compliance	CE, FCC, RoHS

Operating Temperature	Commercial grade electronics rated from 0° to 45° C
Operating Relative Humidity	20 to 80% (no condensation)
Storage Temperature	-30° to 60°C
Storage Relative Humidity	20 to 95% (no condensation)
Warranty	Two years

1.3.2 GS2-GE-50S5 Sensor Response

GS2-GE-50S5M (Mono)

GS2-GE-50S5C (Color)

1.4 Analog-to-Digital Conversion

The camera sensor incorporates an Analog Devices A/D converter to digitize the images produced by the CCD. The 14-bit conversion produces 16,384 possible digital image values between 0 and 65,520. Across a 2-byte data format, the two unused bits are padded with zeros. The two right-most bits are always zero. The following table illustrates the most important aspects of the processor. For more information, refer to the Analog Devices website at www.analog.com.

Resolution	14-bit, 65 MHz
Pixel Gain Amplifier	-3 dB to 6 dB, 3 dB steps
Variable Gain Amplifier	6 dB to 42 dB, 10-bit
Black Level Clamp	0 LSB to 1023 LSB, 1 LSB steps

2 General Camera Operation

2.1 Handling Precautions and Camera Care

Do not open the camera housing. Doing so voids the Hardware Warranty described at the beginning of this reference manual.

Your Point Grey digital camera module is a precisely manufactured device and should be handled with care. Here are some tips on how to care for the device.

- Avoid electrostatic charging. Please consult the following knowledge base article for more details: www.ptgrey.com/support/kb/index.asp?a=4&q=42.
- Users who have purchased a bare board camera should take the following additional protective measures:
 - Either handle bare handed or use non-chargeable gloves, clothes or material. Also, use conductive shoes.
 - Install a conductive mat on the floor or working table to prevent the generation of static electricity.
- When handling the camera unit, avoid touching the lenses. Fingerprints will affect the quality of the image produced by the device.
- To clean the lenses, use a standard camera lens cleaning kit or a clean dry cotton cloth. Do not apply excessive force.
- To clean the imaging surface of your sensor, follow the steps outlined in www.ptgrey.com/support/kb/index.asp?a=4&q=66.
- Our cameras are designed for an office environment or laboratory use. Extended exposure to bright sunlight, rain, dusty environments, etc. may cause problems with the electronics and the optics of the system.
- Avoid excessive shaking, dropping or any kind of mishandling of the device.

2.1.1 Case Temperature and Heat Dissipation

You must provide sufficient heat dissipation to control the internal operating temperature of the camera. The camera temperature can be monitored using TEMPERATURE register 82Ch ([page 1](#)). This register accesses the camera's on-board temperature sensor, which measures the ambient temperature within the case.

Temp. Sensor Specifications

Accuracy	0.5° C
Range	-25° C to +85° C
Resolution	12 bits

To reduce heat, use a cooling fan to set up a positive air flow around the camera, taking into consideration the following precautions:

- Mount the camera on a heat sink, such as a camera mounting bracket, made out of a heat-conductive material like aluminum. A large lens may also act as an effective heat sink.
- Make sure the flow of heat from the camera case to the bracket is not blocked by a non-conductive material like plastic.
- Make sure the camera has enough open space around it to facilitate the free flow of air.

As a result of packing the camera electronics into a small space, the outer case of the camera can become very warm to the touch.

2.2 Powering the Camera

Power must be provided through the GPIO interface. For more information, see General Purpose Input/Output (GPIO). The required input voltage is 12 - 24 V DC. When the camera is power cycled, the camera reverts to its default factory settings or, if applicable, the last saved user configuration set. For more information about configuration sets, see [User Configuration Sets on page 26](#).

Point Grey sells a 12 V wall-mount power supply equipped with a HR25 8-pin GPIO wiring harness for connecting to the camera (**Part No. ACC-01-9006**). For more information, see the [miscellaneous product accessories page](#) on the Point Grey website.

CAMERA_POWER: 610h

Format:

Field	Bit	Description
Cam_Pwr_Ctrl	[0]	<p>Write:</p> <p>0: Begin power-down process 1: Begin power-up process</p> <p>Read:</p> <p>0: Camera is powered down, or in the process of powering up i.e., bit will be zero until camera completely powered up . 1: Camera is powered up</p>
	[1-30]	Reserved
Camera_Power_Status	[31]	<p>Read only</p> <p>Read: the pending value of Cam_Pwr_Ctrl</p>

2.3 Configuring the IP Address

When a new camera is first powered and initialized, a dynamic IP address is assigned to the camera according to the DHCP protocol. If DHCP addressing fails, a link-local address is assigned. You can re-configure the IP address for using the GigE Vision bootstrap registers ([page 142](#)) or the GenICam features ([page 139](#)). Alternatively, the Point Grey GigE Configurator is a tool included with the camera software and drivers package that allows you to set the internet protocol (IP) configuration for any GigE interface cards or Point Grey GigE Vision cameras connected to your system. Using the GigE configurator, you can:

- Set the IP address for the current connection.
- Program a persistent IP address for the camera.
- Configure the default IP addressing behavior of the camera on startup using a persistent IP, DHCP or LLA.

For more information, refer to the online Help file included with the tool.

To open the Point Grey GigE Configurator

Start > Point Grey Research > FlyCapture2 > Utilities > GigEConfigurator

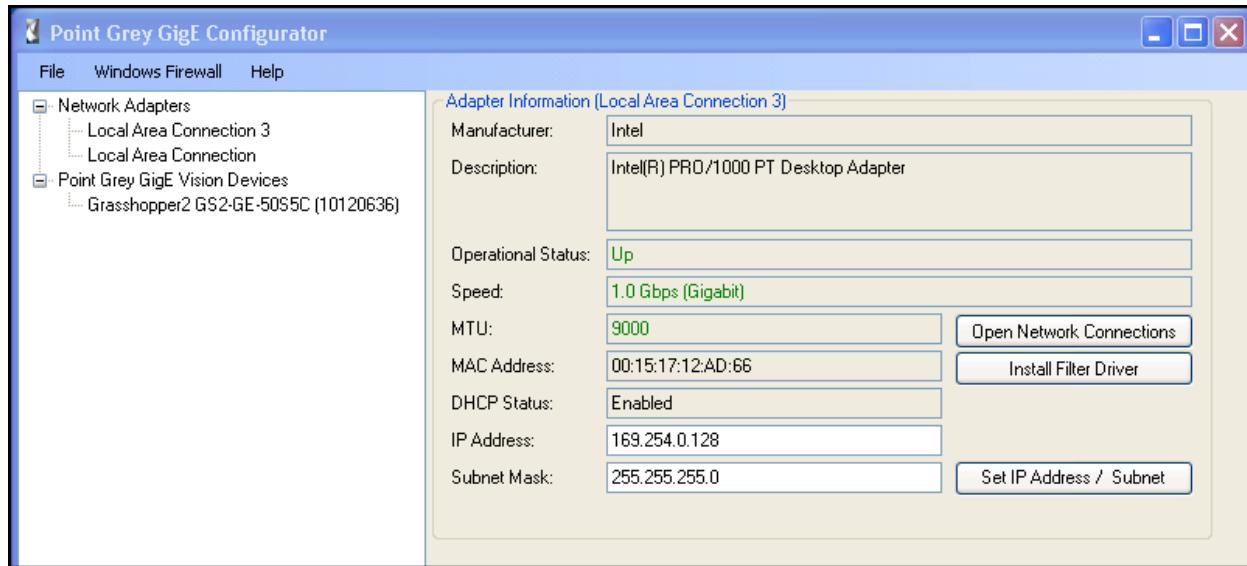


Figure 2.1: Point Grey GigE Configurator

2.4 Configuring Other Network Settings

The following GigE Vision bootstrap registers can be used for configuring the camera on the network. All registers are implemented according to the GigE Vision standard. A listing of all network-related bootstrap registers supported on the camera is provided in [GigE Vision Bootstrap Registers on page 142](#).

2.4.1 Stream Channel Packet Size

The stream channel packet size (SCPS) sets the size, in bytes, of the packet to be sent out by the camera. IP, UDP and GVSP headers are included in this size. The default SCPS is 1400 bytes. We recommend increasing this value to maximize performance, since maximizing packet size reduces processing overhead.

To accommodate the default SCPS of 1400 bytes, the frame rates when the camera is powered on using the factory default settings are 20 FPS in Mode_8 (GS2-GE-20S4) and 19 FPS (GS2-GE-50S5). Additionally, the GS2-GE-50S5 powers on with a 1920 x 1080 centered region of interest. To adjust the power-on default settings, see [User Configuration Sets on page 26](#). For information about frame rate and region of interest, see [Supported Formats, Modes and Frame Rates on page 45](#).

When setting the SCPS, keep in mind the following:

- Some network interface card switches and other network components cannot handle Jumbo Frames, which are Ethernet frames with more than 1500 bytes of payload.
- Changing the packet size may impact throughput depending on the packet delay setting. See [Stream Channel Packet Delay](#) below.

SCPS can be controlled using the `GevSCPSPacketSize` GenICam feature or the GigE Vision Bootstrap registers ([page 142](#)). The FlyCapture SDK also supports configuring the SCPS. For more information, consult the FlyCapture SDK Help.

For information about data packet format, see [Packet Format](#) on page 1.

2.4.2 Stream Channel Packet Delay

The stream channel packet delay (SCPD) register is used to manage camera bandwidth. It indicates the number of ticks (at the frequency of the Timestamp Tick Frequency) to insert between each packet. The default SCPD is 400. Increasing SCPD lowers the amount of bandwidth available to the camera on the network.

The Point Grey Timestamp Tick Frequency is normally 25,000,000 ticks/second, but can be verified by the Timestamp Tick Frequency register ([page 142](#)).

Raising the SCPD may require the frame rate to be reduced to meet the maximum bandwidth restriction of the SCPD setting. Achieving a desired frame rate may require lowering the SCPD.

SCPD can also be controlled using the `GevSCPD` GenICam feature ([page 139](#)) or the GigE Vision bootstrap registers ([page 142](#)). The FlyCapture SDK also supports configuring the SCPD. For more information, consult the FlyCapture SDK Help.

Lowering SCPD may cause the bottom rows of images to be black. To fix, try one or more of the following:

- Use the Point Grey Image Filter Driver with the camera. For more information, see [Configuring Camera Drivers](#) on page 23.
- Increase stream channel packet size (SCPS) as an alternative to securing more bandwidth. For more information, see [Stream Channel Packet Size](#) on previous page
- Use a PCI Express (PCIe) network interface card for interfacing with the camera. For more information, see [GigE Network Interface Card](#) on page 38

2.4.3 Heartbeat

The heartbeat is a mandatory GigE Vision feature to monitor the connection between an application and the camera. The application must reset the heartbeat timer, or the camera will assume an error has occurred and shut down the connection. In general, the FlyCapture API manages the heartbeat at a low level, however the following two features are controllable. Typically they are used when debugging code and setting breakpoints. Unless the heartbeat is disabled, the connection will timeout.

2.4.3.1 Heartbeat Timeout

Heartbeat time is the time, in ms, that the camera will wait between resets from the application. Heartbeat Timeout can be set between 500 ms and 10 s. The default setting is 3000 ms.

Heartbeat timeout can be controlled using the `GevHeartbeatTimeout` GenICam feature ([page 139](#)) or the GigE Vision bootstrap registers ([page 142](#)). The FlyCapture SDK also supports configuring heartbeat timeout. For more information, consult the FlyCapture SDK Help.

2.4.3.2 Heartbeat Disable

Heartbeat disable allows the heartbeat function in the camera to be disabled. The heartbeat is enabled by default.

The heartbeat can be controlled using the `GevGVCPHeartbeatDisable` GenICam feature ([page 139](#)) or the GigE Vision bootstrap registers ([page 142](#)). The FlyCapture SDK also supports configuring the heartbeat. For more information, consult the FlyCapture SDK Help.

2.4.4 Determining Bandwidth Requirements

The following examples illustrate the relationship between packet size ([page 19](#)), packet delay ([page 20](#)) and data throughput on the GigE network, and how to ensure enough bandwidth is available for a given image size and frame rate.

GenICam applications can obtain data throughput calculations using the `Device-MaximumThroughput`, `DeviceAssignedBandwidth` and `DeviceCurrentThroughput` Device Control features. For more information, see [GenICam Features on page 139](#).

Example 1

This example illustrates that a packet size of 9000 bytes and a packet delay of 400 ticks (default setting) results in just over 2/3 usage of GigE bandwidth (693 Mb/sec). This configuration provides adequate bandwidth for a GS2-20S4 camera operating at 1600x1200 resolution in 8 bit/pixel format, at the maximum achievable frame rate of 30 FPS (461 Mb/sec). The amount of GigE bandwidth used in this example is limited only by the imaging requirements.

Packet Size: 9000 bytes

Packet Delay: 400 ticks

Link Speed: 1 Gbit/sec

Resolution: 1600 x 1200

FPS: 30

Pixel Format: Raw8

total packet time = time to transmit packet + packet delay

Time to transmit 9000 byte packet: $9000 * 8 \text{ bits per pixel} = 72,000 \text{ bits}$

$72,000 \text{ bits} / 1,000,000,000 \text{ bps} = 72 \mu\text{s}$

Packet delay: $400 \text{ ticks} / 25,000,000 \text{ ticks per sec} = 16 \mu\text{s}$

Total packet time = $72 \mu\text{s} + 16 \mu\text{s} = 88 \mu\text{s}$

data throughput (bandwidth) = packet size / total packet time

$\text{Packet size} / \text{total packet time} = (8972 \text{ bytes} * 8 \text{ bits per pixel}) / 88 \mu\text{s} = 815 \text{ Mbits per sec}$

Bandwidth = 815 Mbit per sec * 0.85 = 693 Mbit per sec

Notes: 1) 9000-byte packet is reduced by 28 bytes to 8972 bytes due to header information included with every Ethernet packet; 2) Available bandwidth is reduced by 15% for communications control.

*imaging bandwidth = resolution * bit depth * frame rate*

Imaging bandwidth = 1600 * 1200 * 8 bits per pixel * 30 FPS = 461 Mbit per sec

Example 2

This example illustrates that a packet size of 1400 bytes (default setting) and a packet delay of 1000 ticks provides only 182 Mb/sec of GigE bandwidth usage. This configuration does not provide adequate bandwidth for a GS2-50S5 operating at maximum resolution in 8 bit/pixel format, at the maximum supported frame rate of 15 FPS (602 Mb/sec). In this case, throughput is limited by the amount of network bandwidth available. Frame rate must be lowered to 4.5 FPS to operate within the specified networking parameters.

Packet Size: 1400 bytes

Packet Delay: 1000 ticks

Link Speed: 1 Gbit/sec

Resolution: 2448 x 2048

FPS: 15

Pixel Format: Raw8

total packet time = time to transmit packet + packet delay

Time to transmit 1400 byte packet: $1400 * 8 \text{ bits per pixel} = 11,200 \text{ bits}$

$11,200 \text{ bits} / 1,000,000,000 \text{ bps} = 11.2 \mu\text{s}$

Packet delay: $1000 \text{ ticks} / 25,000,000 \text{ ticks per sec} = 40 \mu\text{s}$

Total packet time = $11.2 \mu\text{s} + 40 \mu\text{s} = 51.2 \mu\text{s}$

data throughput (bandwidth) = packet size / total packet time

Packet size / total packet time = $(1372 \text{ bytes} * 8 \text{ bits per pixel}) / 51.2 \mu\text{s} = 214 \text{ Mbits per sec}$

Bandwidth = 214 Mbit per sec * 0.85 = 182 Mbit per sec

Notes: 1) 1400-byte packet is reduced by 28 bytes to 1372 bytes due to header information included with every Ethernet packet; 2) Available bandwidth is reduced by 15% for communications control.

*imaging bandwidth = resolution * bit depth * frame rate*

Imaging bandwidth = $2448 * 2048 * 8 \text{ bits per pixel} * 15 \text{ FPS} = 602 \text{ Mbit per sec}$

achievable frame rate = available bandwidth / bit depth / resolution

Achievable frame rate = $182 / 8 \text{ bits per pixel} / (2448 * 2048) = 4.5 \text{ FPS}$

2.4.4.1 Bandwidth Requirements for Multiple Cameras

The total throughput of multiple cameras that operate on a single GigE connection through a network switch must fall within the available GigE bandwidth specification of 1 Gbps. Considering the cameras in the previous examples, the camera in the first example uses 461 Mbps of bandwidth, and the camera in the second example uses 182 Mbps (assuming its frame rate is reduced to 4.5 FPS). If these two cameras operated together, the total throughput would be 643 Mbps, which falls within available GigE bandwidth. If, however, the second camera's network parameters were changed to allow it to operate at 15 FPS, its throughput of 602 Mbps, together with the first

camera's throughput, would exceed the GigE bandwidth specification, resulting in unexpected imaging behavior such as dropped packets and lost images.

2.5 Configuring Camera Drivers

Point Grey provides the Image Filter Driver for use with GigE Vision cameras. This driver operates as a network service between the camera and the Microsoft built-in UDP stack to filter out GigE vision stream protocol (GVSP) packets. The filter driver is installed and enabled by default as part of the FlyCapture SDK installation process. Use of the filter driver is recommended, as it can reduce CPU load and improve image streaming performance. Alternatively, Point Grey GigE Vision cameras can operate without the filter driver by communicating directly with the Microsoft UDP stack. GigE Vision cameras operating on Linux systems can communicate directly with native Ubuntu drivers.

For more information about the image filter driver, see the FlyCapture SDK Help.

2.6 Managing Camera Settings

2.6.1 Using the Control and Status Registers

2.6.1.1 IIDC 1394-Compatible Registers

The user can monitor or control each feature of the camera through the control and status registers (CSRs) programmed into the camera firmware. To facilitate migration from existing, FireWire-based applications, these registers are compatible with v1.32 of the Instrumentation & Industrial Digital Camera (I IDC) 1394 registers found in Point Grey FireWire cameras. *Format* tables for each 32-bit register are presented along with their respective feature descriptions throughout this manual. These tables describe the purpose of each bit that comprises the register. Bit 0 is always the most significant bit of the register value.

Register offsets and values are generally referred to in their hexadecimal forms, represented by either a '0x' before the number or 'h' after the number, e.g. the decimal number 255 can be represented as 0xFF or FFh.

For more information about camera registers, including the base register memory map, config ROM offsets and calculating register addresses, see [General Register Information](#) on page 116

The controllable fields of most registers are *Mode* and *Value*.

Mode:

Each CSR has three bits for mode control, ON_OFF, One_Push and A_M_Mode (Auto/Manual mode). Each feature can have four states corresponding to the combination of mode control bits.

Not all features implement all modes.

One_Push	ON_OFF	A_M_Mode	State
N/A	0	N/A	Off state. Feature will be fixed value state and uncontrollable.
N/A	1	1	Auto control state. Camera controls feature by itself continuously.
0	1	0	Manual control state. User can control feature by writing value to the value field.
1	1	0	One-Push action. Camera controls feature by itself only once and returns to the Manual control state with adjusted value.

Table 2.1: CSR Mode Control Descriptions

Value:

If the *Presence_Inq* bit of the register is one, the *value* field is valid and can be used for controlling the feature. The user can write control values to the *value* field only in the **Manual control state**. In the other states, the user can only read the *value*. The camera always has to show the real setting value at the *value* field if *Presence_Inq* is one.

2.6.1.2 Using the Inquiry Registers

The camera provides a series of inquiry registers, which allow you to reference basic information about camera features. For information about the following inquiry registers, see [Inquiry Registers on page 120](#):

- *Inquiry Registers for Basic Functions and Feature Presence*: To determine if a particular function or feature is available on the camera.
- *Inquiry Registers for Feature Elements*: To determine if elements of a particular feature are available on the camera.
- *Video Format, Mode and Frame Rate Inquiry Registers*: To determine which standard video format, modes and frame rates are available on the camera.

The following additional inquiry registers are also available:

- *Inquiry Registers for Format_7 Video Modes* ([page 129](#))
- *Inquiry Registers for Lookup Table Functionality* ([page 92](#))

2.6.1.3 Using the Absolute Value Registers

Many Point Grey IEEE-1394 cameras implement “absolute” modes for various camera settings that report real-world values, such as shutter time in seconds (s) and gain value in decibels (dB). Using these absolute values is easier and more efficient than applying complex conversion formulas to the information in the *Value* field of the associated Control and Status Register. A relative value does not always translate to the same absolute value. Two properties that can affect this relationship are pixel clock frequency and horizontal line frequency. These properties are, in turn, affected by such properties as resolution, frame rate, region of interest (ROI) size and position, and packet size. Additionally, conversion formulas can change between firmware versions. Point Grey therefore recommends using absolute value registers, where possible, to determine camera values.

For more information, see [Absolute Value Registers on page 134](#).

2.6.1.4 GigE Vision Bootstrap Registers

The camera is programmed with a number of GigE Vision-compliant bootstrap registers for storing camera metadata and controlling network management settings. For a listing of all GigE Vision bootstrap registers on the camera, see [GigE Vision Bootstrap Registers on page 142](#).

2.6.2 Operating System and Software Support

2.6.2.1 FlyCap Demo Program

The FlyCap application is a generic, easy-to-use streaming image viewer included with the FlyCapture® SDK that can be used to test many of the capabilities of your compatible Point Grey camera. It allows you to view a live video stream from the camera, save individual images, adjust the various video formats, frame rates, properties and settings of the camera, and access camera registers directly. Consult the FlyCapture SDK Help for more information.

2.6.2.2 Custom Applications Built with the FlyCapture API

The FlyCapture SDK includes a full Application Programming Interface that allows customers to create custom applications to control Point Grey Imaging Products. Included with the SDK are a number of source code examples to help programmers get started.

2.6.2.3 GenICam Applications

The camera includes an XML device description file for interfacing with third-party GenICam-compliant APIs. This file can be accessed via First URL bootstrap register 200h ([page 142](#)). A listing of features that are included in the XML file is provided in [GenICam Features on page 139](#).

2.6.2.4 Recommended Hardware and Software Requirements

Hardware Requirements

- Intel Core 2 dual or comparable PC
- 2 GB RAM
- GigE Network Interface Card ([page 38](#))
- Ethernet Cable ([page 38](#))
- Power Supply ([page 18](#))

Software Requirements (Windows)

- Windows XP (Service Pack 3), Windows Vista (Service Pack 1) or Windows 7
- MS Visual Studio 6.0 SP5 (to compile and run example FlyCapture SDK code on Windows XP 32-bit)
- MS Visual Studio 2005 SP1 (to compile and run example FlyCapture SDK code on Windows XP 64-bit)
- MS Visual Studio 2005 SP1 and SP1 Update for Vista (to compile and run example code on Windows Vista or Windows 7)

Software Requirements (Linux)

- Ubuntu 8.04
- gtkmm-2.4-dev and libgtkmm-2.4-dev dependencies to compile and run graphical user interface-based example code. (These libraries are usually pre-installed.)

For more information about operating system compatibility, see [Knowledge Base Article 258](#). For more information about recommended requirements for working with the FlyCapture SDK, see the FlyCapture SDK Help.

2.6.2.5 Macintosh and Linux OS Support

Users wishing to operate their Point Grey camera on the Macintosh OS/X or Linux operating systems should consult the following knowledge base articles:

Macintosh support:

www.ptgrey.com/support/kb/index.asp?a=4&q=173

Linux support:

www.ptgrey.com/support/kb/index.asp?a=4&q=330

www.ptgrey.com/support/kb/index.asp?a=4&q=17

2.6.3 User Configuration Sets

The camera can save and restore settings and imaging parameters via on-board configuration sets, also known as memory channels. This is useful for saving default power-up settings, such as gain, shutter, video format and frame rate, and others that are different from the factory defaults.

Memory channel 0 is used for the default factory settings that users can always restore to. Two additional memory channels are provided for custom default settings. The camera will initialize itself at power-up, or when explicitly reinitialized, using the contents of the last saved memory channel. Attempting to save user settings to the (read-only) factory defaults channel will cause the camera to switch back to using the factory defaults during initialization.

For a listing of all registers saved, see [Memory Channel Registers on next page](#).

MEMORY_SAVE: 618h

Format:

Field	Bit	Description
Memory_Save	[0]	1 = Current status and modes are saved to MEM_SAVE_CH (Self cleared)
	[1-31]	Reserved.

MEM_SAVE_CH: 620h

Format:

Field	Bit	Description
Mem_Save_Ch	[0-3]	Write channel for Memory_Save command. Shall be >=0001 (0 is for factory default settings) See BASIC_FUNC_INQ register.
	[4-31]	Reserved.

CUR_MEM_CH: 624h**Format:**

Field	Bit	Description
Cur_Mem_Ch	[0-3]	Write: Loads the camera status, modes and values from the specified memory channel. Read: The current memory channel number.
	[4-31]	Reserved.

2.6.3.1 Memory Channel Registers

The values of the following registers are saved in memory channels.

Register Name	Offset
CURRENT_FRAME_RATE	600h
CURRENT_VIDEO_MODE	604h
CURRENT_VIDEO_FORMAT	608h
CAMERA_POWER	610h
CUR_SAVE_CH	620h
BRIGHTNESS	800h
AUTO_EXPOSURE	804h
SHARPNESS	808h
WHITE_BALANCE	80Ch
HUE	810h
SATURATION	814h
GAMMA	818h
SHUTTER	81Ch
GAIN	820h
IRIS	824h
FOCUS	828h
TRIGGER_MODE	830h
TRIGGER_DELAY	834h
FRAME_RATE	83Ch
PAN	884h
TILT	888h

Register Name	Offset
ABS_VAL_AUTO_EXPOSURE	908h
ABS_VAL_SHUTTER	918h
ABS_VAL_GAIN	928h
ABS_VAL_BRIGHTNESS	938h
ABS_VAL_GAMMA	948h
ABS_VAL_TRIGGER_DELAY	958h
ABS_VAL_FRAME_RATE	968h
IMAGE_DATA_FORMAT	1048h
AUTO_EXPOSURE_RANGE	1088h
AUTO_SHUTTER_RANGE	1098h
AUTO_GAIN_RANGE	10A0h
GPIO_XTRA	1104h
SHUTTER_DELAY	1108h
GPIO_STRPAT_CTRL	110Ch
GPIO_CTRL_PIN_x	1110h, 1120h, 1130h, 1140h
GPIO_XTRA_PIN_x	1114h, 1124h, 1134h, 1144h
GPIO_STRPAT_MASK_PIN_x	1118h, 1128h, 1138h, 1148h
FRAME_INFO	12F8h
IMAGE_POSITION	008h
IMAGE_SIZE	00Ch
COLOR_CODING_ID	010h
GVCP Configuration (includes Heartbeat Disable) (GigE Vision Bootstrap Register)	0954h (no offset)
Stream Channel Packet Size (GigE Vision Bootstrap Register)	0D04h (no offset)
Stream Channel Packet Delay (GigE Vision Bootstrap Register)	0D08h (no offset)
Heartbeat Timeout (GigE Vision Bootstrap Register)	0938h (no offset)

2.7 Camera Error and Status Monitoring

2.7.1 Main Status Indicator LED

2.7.1.1 LED Behavior During Camera Power-up and Initialization

Status	LED Behavior	Approximate Time
1. Camera powers up and programs the FPGA	Steady green, high intensity	5 seconds
2. Camera boots up	Steady green, low intensity	2 seconds
3. Establishing IP connection	One, two or three green blinks. See following table	1-2 seconds
4. Camera is streaming images	Steady green, high intensity	

Table 2.2: LED Behavior During Power-up and Initialization

The camera attempts to establish an IP connection in the following order: 1) A persistent IP address, if enabled and available; 2) a DHCP address, if enabled and available; 3) a link-local address (LLA). The LED behavior at this stage of initialization (step 3 in the table above) is as follows:

IP Connection Blink Behavior (3 blinks total)	Type of Connection Established
One green blink	Persistent IP
Two green blinks	DHCP
Three green blinks	LLA
LED remains steady green, low intensity	Failure to establish connection

Table 2.3: LED Behavior During IP Connection

For more information about IP addressing, see [Configuring the IP Address](#) on page 18.

2.7.1.2 LED Behavior During Regular Camera Operation

LED Status	Description
Off	Not receiving power
Steady green, high intensity	Streaming images
Three (3) red flashes	Ethernet connection failure
Red flashing slowly	General error - contact technical support (page 114)

Table 2.4: LED Behavior During Regular Camera Operation

2.7.2 GigE Connector Indicator LEDs

The RJ-45 Ethernet jack includes two status LEDs: a green LED to the left of the jack, and an orange LED to the right. These LEDs indicate connection status and activity on the Ethernet network.

2.7.2.1 LED Behavior During Camera Power-up and Initialization

On camera power-up, both LEDs turn on for approximately one second once the camera is initialized, then turn off until an IP connection is established and image streaming begins.

2.7.2.2 LED Behavior during Regular Camera Operation

Green LED (left)	Description
Off	No Ethernet link established between camera and host controller.
On	Ethernet link established.

Orange LED (right)	Description
Off	No image streaming activity on the Ethernet connection
Blinking	Indicates sporadic activity on the connection
Solid On	Indicates continuous activity on the connection, such as video streaming or flash data writing

Table 2.5: GigE Connector LED Behavior

LED_CTRL: 1A14h

This register allows the user to turn off the camera's status LED. LED(s) are re-enabled the next time the camera is power cycled.

On GigE Vision cameras, this register enables or disables both the main camera status LED and the GigE connector indicator LEDs, if equipped.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-22]	Reserved
LED_Ctrl	[23-31]	Enable or disable the LED 0x00: Off, 0x74: On

2.7.3 General Status Monitoring

INITIALIZE: 000h

Format:

Offset	Name	Field	Bit	Description
000h	INITIALIZE	Initialize	[0]	If this bit is set to 1, the camera will reset to its initial state and default settings. This bit is self-cleared.
		-	[1-31]	Reserved

TIME_FROM_INITIALIZE: 12E0h

This register reports the time, in seconds, since the camera (FPGA) was initialized. This initialization occurs during a hard power-up. This is different from powering up the camera via the **CAMERA_POWER** (page 18) register, which will not reset this time.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
Time_From_Init	[1-31]	Time in seconds since the camera was initialized.

LINK_UP_TIME: 12E4h

This register reports the time, in seconds, since the last Ethernet re-connection occurred. This will be equal to the value reported by **TIME_FROM_INITIALIZE** (page 31) if no reset has occurred since the last time the camera was initialized.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
Time_From_Reset	[1-31]	Time in seconds since the camera detected a re-connection.

VOLTAGE: 1A50h – 1A54h

This register allows the user to access and monitor the various voltage registers supported by the camera.

Format:

Offset	Name	Field	Bit	Description
1A50h	VOLTAGE_LO_INQ	Presence_Inq	[0]	Presence of this feature 0: Not available, 1: Available
		-	[1-7]	Reserved
		-	[8-19]	Number of voltage registers supported
		-	[20-31]	Reserved
1A54h	VOLTAGE_HI_INQ		[0-31]	Quadlet offset of the voltage CSR's, which report the current voltage in Volts using the 32-bit floating-point IEEE/REAL*4 format.

CURRENT: 1A58h-1A5Ch

This register allows the user to access and monitor the various current registers supported by the camera.

Format:

Offset	Name	Field	Bit	Description
1A58h	CURRENT_LO_INQ	Presence_Inq	[0]	Presence of this feature 0: Not available, 1: Available
		-	[1-7]	Reserved
		-	[8-19]	Number of current registers supported
		-	[20-31]	Reserved
1A5Ch	CURRENT_HI_INQ		[0-31]	Quadlet offset of the current CSR's, which report the current in amps using the 32-bit floating-point IEEE/REAL*4 format.

TEMPERATURE: 82Ch

Allows the user to get the temperature of the camera board-level components. For cameras housed in a case, it is the ambient temperature within the case. *Value* is in kelvins (0°C = 273.15K) in increments of one-tenth (0.1) of a kelvin.

For more information about camera temperature, see [Case Temperature and Heat Dissipation on page 17](#).

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A, 1: Available
Abs_Control	[1]	Absolute value control 0: Control with the value in the Value field 1: Control with the value in the Absolute value CSR. If this bit = 1, the value in the Value field is read-only.
	[2-4]	Reserved

Field	Bit	Description
One_Push	[5]	One push auto mode (controlled automatically by camera only once) Write: 1: Begin to work (self-cleared after operation) Read: 0: Not in operation, 1: In operation If A_M_Mode = 1, this bit is ignored
ON_OFF	[6]	Write: ON or OFF for this feature Read: read a status 0: OFF, 1: ON If this bit = 0, other fields will be read only
A_M_Mode	[7]	Read: read a current mode 0: Manual, 1: Automatic
	[8-19]	Reserved
Value	[20-31]	Value. A write to this value in 'Auto' mode will be ignored.

2.7.4 Error Status Registers

XMIT_FAILURE: 12FCh

This register contains a count of the number of failed frame transmissions that have occurred since the last reset.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
Frame_Count	[1-31]	Read: Count of failed frame transmissions. Write: Reset.

VMODE_ERROR_STATUS: 628h

This register is used by the camera to report any camera configuration errors. If an error has occurred, no image data will be sent by the camera.

Format:

Field	Bit	Description
Vmode_Error_Status	[0]	Error status of combination of video format, mode, frame rate and ISO_SPEED setting. 0: no error 1: error This flag will be updated every time one of the above settings is changed by writing a new value.
	[1-31]	Reserved.

2.7.5 Device Information

PIXEL_CLOCK_FREQ: 1AF0h

This register specifies the current pixel clock frequency (in Hz) in IEEE-754 32-bit floating point format. The camera pixel clock defines an upper limit to the rate at which pixels can be read off the image sensor.

Format:

Field	Bit	Description
Pixel_Clock_Freq	[0-31]	Pixel clock frequency in Hz (read-only).

HORIZONTAL_LINE_FREQ: 1AF4h

This register specifies the current horizontal line frequency in Hz in IEEE-754 32-bit floating point format.

Format:

Field	Bit	Description
Horizontal_Line_Freq	[0-31]	Horizontal line frequency in Hz (read-only).

SERIAL_NUMBER: 1F20h

This register specifies the unique serial number of the camera.

Format:

Field	Bit	Description
Serial_Number	[0-31]	Unique serial number of camera (read-only)

MAIN_BOARD_INFO: 1F24h

This register specifies the type of camera (according to the main printed circuit board).

Format:

Field	Bit	Description
Major_Board_Design	[0-11]	0x2: Digiclops 0x3: Dragonfly 0x4: Sync Unit 0x6: Ladybug Head 0x7: Ladybug Base Unit 0x8: Bumblebee 0xA: Scorpion Back Board 0x10: Flea 0x12: Dragonfly Express 0x18: Dragonfly2 0x19: Flea2 0x1A: Firefly MV 0x1C: Bumblebee2 0x1F: Grasshopper 0x22: Grasshopper2 0x21: Flea2G-13S2 0x24: Flea2G-50S5 0x26: Chameleon 0x2B: Flea3 0x36: Zebra2
Minor_Board_Rev	[12-15]	Internal use
Reserved	[16-31]	Reserved

SENSOR BOARD INFO: 1F28h

This register specifies the type of imaging sensor used by the camera (due to the wide variety of sensors available).

The interpretation of this register varies depending on the camera type, as defined in the MAIN_BOARD_INFO register 0x1F24 (page 34) Read MAIN_BOARD_INFO to determine how to use the Sensor_Type_x fields.

Format:

Field	Bit	Description
Sensor_Type_1	[0-11]	tbd
Minor_Board_Rev	[12-15]	Internal use
Reserved	[16-27]	Reserved
Sensor_Type_2	[28-31]	tbd

BUILD_TIMESTAMP: 1F40h

This register specifies the date that the current version of the firmware was built in Unix time format.

Format:

Field	Bit	Description
Build_Date	[0-31]	Date firmware was built (read-only)

FIRMWARE_VERSION: 1F60h

This register contains the version information for the currently loaded camera firmware. For more information on Point Grey versioning standards, see Knowledge Base Article 96 (<http://www.ptgrey.com/support/kb/index.asp?a=4&q=96>).

Format:

Field	Bit	Description
Major	[0-7]	Major revision number
Minor	[8-15]	Minor revision number
Type	[16-19]	Type of release 0: Alpha 1: Beta 2: Release Candidate 3: Release
Revision	[20-31]	Revision number

FIRMWARE_BUILD_DATE: 1F64h

Specifies the date that the current version of the firmware was built in Unix time format.

Format:

Field	Bit	Description
Build_Date	[0-31]	Date firmware was built (read-only)

FIRMWARE_DESCRIPTION: 1F68-1F7Ch

Null padded, big-endian string describing the currently loaded version of firmware.

2.8 Non-Volatile Flash Memory

The camera has 512 KB of non-volatile memory for users to store data.

DATA_FLASH_CTRL: 1240h

This register controls access to the camera's on-board flash memory. Each bit in the data flash is initially set to 1.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-5]	Reserved
Clean_Page	[6]	Write: 1: Write page to data flash 0: No-op Read: 1: Page is clean 0: Page is dirty
	[7]	Reserved
Page_Size	[8-19]	8 == 256 byte page 9 == 512 byte page
Num_Pages	[20-31]	11 == 2048 pages 13 == 8192 pages

DATA_FLASH_DATA: 1244h

This register provides the quadlet offset to the start of the actual data contained in the flash memory (query DATA_FLASH_CTRL register 1240h ([page 36](#))).

Any access outside of a modified page will automatically cause the page to be rewritten to flash, i.e. the user can write as much information as necessary, then perform a single write to the DATA_FLASH_CTRL register 1240h.

Format:

Field	Bit	Description
DF_Data	[0-31]	Quadlet offset to the start of data

2.9 Upgrading Camera Firmware

Camera firmware can be upgraded or downgraded to later or earlier versions using the UpdaterGUI2 program that is bundled with every firmware version available from www.ptgrey.com/support/downloads. The latest firmware versions often include significant bug fixes and feature enhancements. To determine the changes made in a specific firmware version, consult the Release Notes. For more information on updating camera firmware, consult the UpdaterGUI2 User Manual, included with the firmware bundle.

3 Camera Interface and Connectors

3.1 GigE Connector

The 8-pin RJ-45 Ethernet jack is equipped with two (2) M2 screwholes for secure connection. Pin assignments conform to the Ethernet standard. For information about the orange and green status LEDs on each side of the connector, see [GigE Connector Indicator LEDs on page 30](#).

3.2 Cables

Category 5e or 6 cables up to 100 meters in length should be used for connecting the camera to the GigE network interface card on the host system. Point Grey sells a 5-meter Category 5e cable for this purpose. For more information, visit the cable accessories page on the Point Grey website, at <http://www.ptgrey.com/products/accessories/index.asp?type=cables>. (Part No. ACC-01-2100)

3.3 GigE Network Interface Card

A 1000 Mbps GigE network interface card (NIC) is required for streaming images on the Ethernet network between the camera and host system. Point Grey sells a GigE PCI Express (PCIe) card for this purpose. For more information, visit the interface card accessories page on the Point Grey website, at <http://www.ptgrey.com/products/accessories/index.asp?type=cards>. (Part No. ACC-01-1100)

For optimal video streaming and camera control performance, we recommend a PCIe interface equipped with an Intel PRO 1000 chipset.

3.4 General Purpose Input/Output (GPIO)

The camera has an 8-pin GPIO connector on the back of the case. The connector is a Hirose HR25 8 pin connector (Mfg P/N: HR25-7TR-8SA).

Diagram	Pin	Function	Function
	1	IO0	Opto-isolated input (default Trigger in)
	2	IO1	Opto-isolated output
	3	IO2	Input / Output / serial transmit (TX)
	4	IO3	Input / Output / serial receive (RX)
	5	GND	Ground for bi-directional IO, V_{EXT} , +3.3 V pins
	6	GND	Ground for opto-isolated IO pins
	7	V_{EXT}	Allows the camera to be powered externally
	8	+3.3 V	Power external circuitry up to 150 mA

Table 3.1: GPIO pin assignments (as shown looking at rear of camera)

Inputs can be configured to accept external trigger signals. Outputs can be configured to send an output signal. For information about I/O configuration, refer to the following sections:

- *Asynchronous External Trigger Modes* (page 53)
- *Programmable Strobe Output* (page 66)
- *Pulse Width Modulation (PWM)* (page 73)

3.4.1 GPIO Electrical Characteristics

The GPIO pins are TTL 3.3V pins. When configured as **inputs**, the pins are internally pulled high using weak pull-up resistors to allow easy triggering of the camera by simply shorting the pin to ground (GND). Inputs can also be directly driven from a 3.3V or 5V logic output. The inputs are protected from both over and under voltage. It is recommended, however, that they only be connected to 5V or 3.3V digital logic signals. When configured as **outputs**, each line can sink 10mA of current. To drive external devices that require more, consult the following article for information on buffering an output signal using an optocoupler:

KB Article 200: www.ptgrey.com/support/kb/index.asp?a=4&q=200

The V_{EXT} pin (Pin 7) allows the camera to be powered externally. The voltage limit is 12-24 V, and current is limited to 1A.

The **+3.3V** pin is fused at 150mA. External devices connected to Pin 8 should not attempt to pull anything greater than that.

3.4.2 GPIO0 (Opto-Isolated Input) Circuit

The figure below shows the schematic for the opto-isolated input circuit.

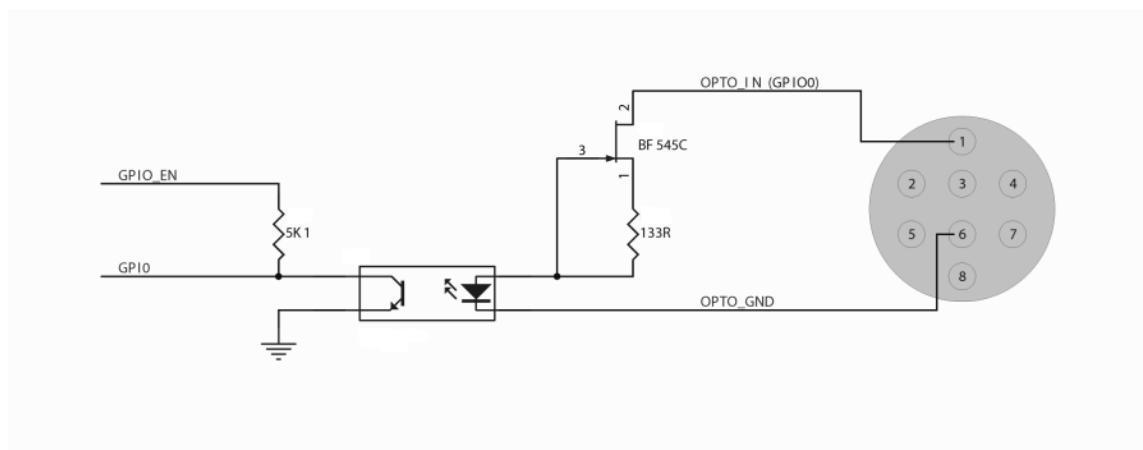


Figure 3.1: Optical input circuit

- *Logical 0 input voltage: 0 VDC to +1 VDC (voltage at OPTO_IN)*
- *Logical 1 input voltage: +1.5 VDC to +30 VDC (voltage at OPTO_IN)*
- *Maximum input current: 8.3 mA*
- *Behavior between 1 VDC and 1.5 VDC is undefined and input voltages between those values should be avoided*
- *Input delay time: 4 μ s*

3.4.3 GPIO1 (Opto-Isolated Output) Circuit

The figure below shows the schematic for the opto-isolated output circuit. The maximum current allowed through the opto-isolated output circuit is 25 mA.

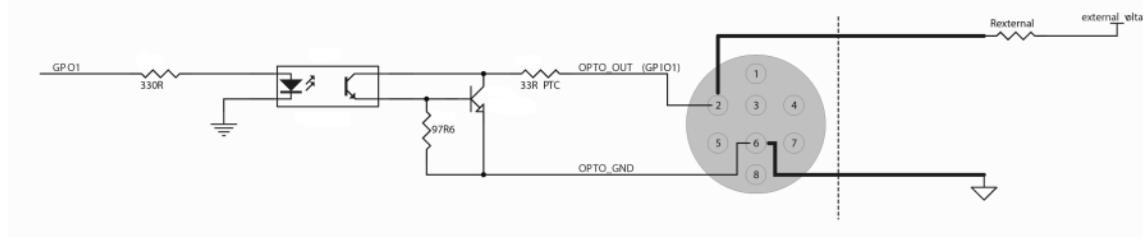


Figure 3.2: Optical output circuit

The following table lists the switching times for the opto-isolator in the output pin, assuming an output VCC of 5 V and a 1 k Ω resistor.

Parameter	Value
Delay Time	9 μ s
Rise Time	16.8 μ s
Storage Time	0.52 μ s
Fall Time	2.92 μ s

The following table lists several external voltage and resistor combinations that have been tested to work with the opto-isolated output.

External Voltage	External Resistor	OPTO_OUT Voltage	OPTO_OUT Current
3.3 V	1 kΩ	0.56 V	2.7 mA
5 V	1 kΩ	0.84 V	4.2 mA
12 V	2.4 kΩ	0.91 V	4.6 mA
24 V	4.7 kΩ	1.07 V	5.1 mA
30 V	4.7 kΩ	1.51 V	13.3 mA

3.4.4 GPIO 2 / 3 (Bi-Directional) Circuit

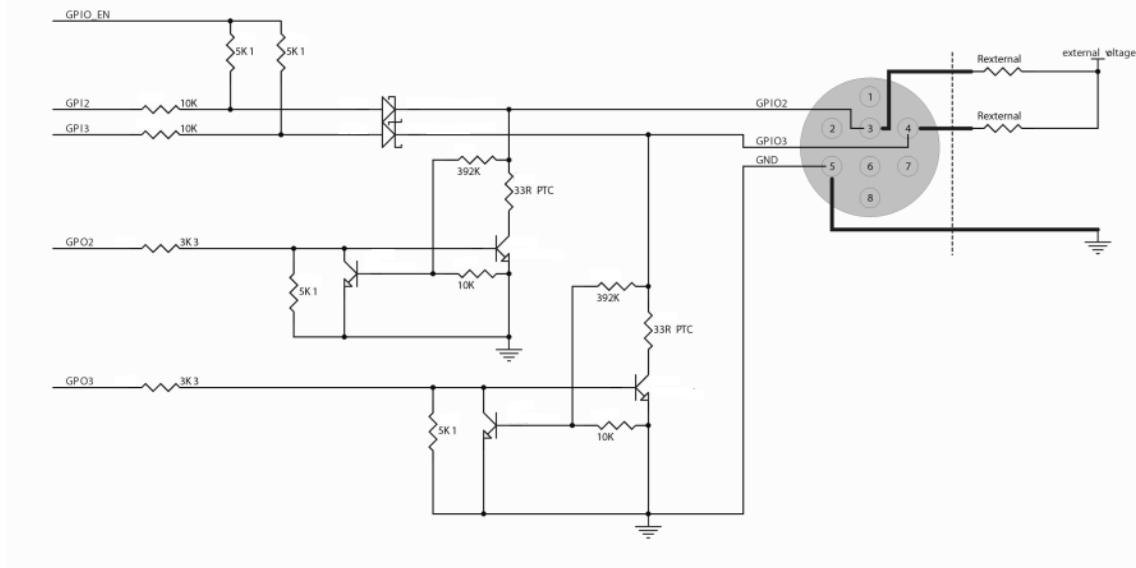


Figure 3.3: Figure 4: GPIO2 / 3 Circuit

3.4.4.1 Input Side

- *Logical 0 input voltage: 0 VDC to +0.5 VDC (voltage at GPIO2 / 3)*
- *Logical 1 input voltage: +1.5 VDC to +30 VDC (voltage at GPIO2 / 3)*
- *Behavior between 0.5 VDC and 1.5 VDC is undefined and input voltages between those values should be avoided*

To avoid damage, connect the ground (GND) pin first before applying voltage to the GPIO line.

3.4.4.2 Output Side

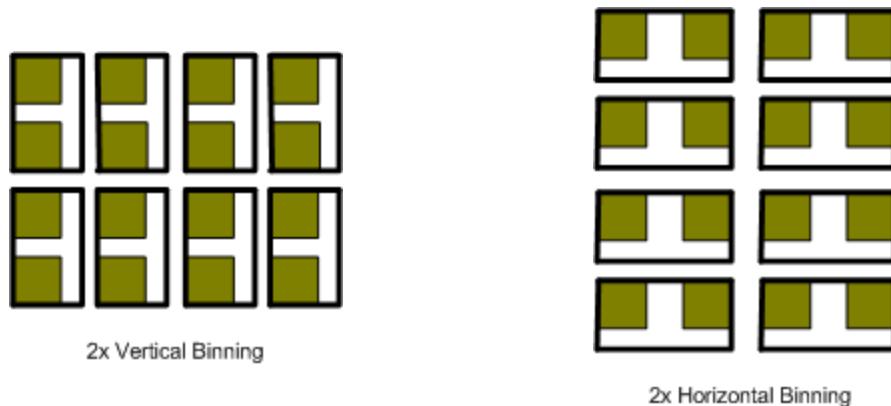
The maximum output current allowed through the bi-directional circuit is 25mA (limit by PTC resistor), and the output impedance is 40Ω.

The following table lists several external voltage and resistor combinations that have been tested to work with the bi-directional GPIO when configured as output.

External Voltage	External Resistor (R_{external})	GPIO2/3 Voltage
3.3 V	1 kΩ	0.157 V
5 V	1 kΩ	0.218 V
12 V	1 kΩ	0.46 V
24 V	1 kΩ	0.86 V
30 V	1 kΩ	0.966 V

The following table lists the switching times for a standard GPIO pin, assuming an output VCC of 5V and a 1kΩ resistor.

Parameter	Value
Delay Time	0.28 μs
Rise Time	0.06 μs
Storage Time	0.03 μs
Fall Time	0.016 μs


4 Video Formats, Modes and Frame Rates

4.1 Binning and ROI Modes

The camera implements a number of video modes that allow the user to select a specific region of interest (ROI) of the image. Some modes also aggregate pixel values using either pixel binning or subsampling. Specifying an ROI may increase frame rate. Modes that perform binning or subsampling may increase image intensity.

"Binning" refers to aggregation that takes place in an analog manner, directly on the sensor before read-out. "Subsampling" refers to aggregation that takes place digitally on the FPGA, after read-out. Unless specified otherwise, color data is maintained in pixel binning/subsampling modes.

The figures below illustrate how binning/subsampling works. 2x vertical binning aggregates two adjacent vertical pixel values to form a single pixel value. 2x horizontal binning works in the same manner, except two adjacent horizontal pixel values are aggregated.

Figure 4.1: 2x Vertical and 2x Horizontal Binning

Some binning operations average the pixel values after aggregation. This type of binning is referred to as "binning plus averaging," and usually results in little or no change in overall image intensity. Other binning operations do not perform any averaging after aggregation, which usually results in increased intensity. Binning without averaging is referred to as "additive binning."

Changing the size of the image or the pixel encoding format requires the camera to be stopped and restarted. Ignoring the time required to do this in software (tearing down, then reallocating, image buffers, write times to the camera, etc.), the maximum amount of time required for the stop/start procedure is slightly more than one frame time.

Additional binning information can be obtained by reading the [FORMAT_7_RESIZE_INQ](#) (page 130) register 0x1AC8.

For information about configuring video mode, see [Video Mode Control and Status Registers](#) on page 129.

4.1.1 Video Mode Descriptions

Mode_0

Mode_0 allows only for specifying a region of interest, and does not perform any binning. This mode uses a faster pixel clock compared to Mode_7, which can result in faster frame rates when ROI height is reduced.

Mode_1

Mode_1 implements 2X vertical and 2X horizontal additive binning. On color models, both horizontal and vertical binning are performed as subsampling on the FPGA chip of the camera. On monochrome models, vertical binning is performed on the sensor, and horizontal binning is performed on the FPGA chip. This mode results in a resolution that is both half the width and half the height of the original image. Mode_1 may result in an increase in brightness and improved signal-to-noise ratio, however no frame rate increase is achieved.

Mode_4

Mode_4 implements 2X vertical binning and 2X horizontal subsampling, and is available on color models only. Horizontal subsampling is performed prior to color processing. Although image quality may be poorer than in Mode_1, a frame rate increase is possible in this mode.

Mode_5

Mode_5 implements 4X vertical and 4X horizontal additive binning, resulting in a resolution that is both one quarter the width and one quarter the height of the original image. On color models, Both horizontal and vertical binning are performed as subsampling, on the FPGA chip of the camera. On monochrome models, vertical binning is performed on the sensor, and horizontal binning is performed on the FPGA chip. Mode_5 may result in an increase in brightness and improved signal-to-noise ratio. However, no frame rate increase is achieved. This mode is not available in Raw pixel formats.

Mode_6

Mode_6 is available on color models only, but only in monochrome pixel formats. This mode implements 4X vertical binning and 4X horizontal subsampling, resulting in a resolution that is both one quarter the width and one quarter the height of the original image.

Mode_7

Mode_7 allows only for specifying a region of interest, and does not perform any binning. This mode uses a slower pixel clock, and is recommended for longer extended shutter times and/or improved imaging performance. There may be no frame rate increase when ROI size is reduced.

Mode_8

Mode_8 is available on GS2-GE-20S4 models only. This mode is identical to Mode_0, except the maximum resolution is 1600x1200, which runs at 30 FPS.

4.2 Calculating Maximum Possible Frame Rate

The maximum achievable frame rate for each camera on the network depends on available bandwidth, pixel format (bit depth) and resolution, and can be determined using the following formula:

$$\text{Achievable_frame_rate} = \text{Available_bandwidth} / \text{Bit_depth} / \text{Resolution}$$

Available bandwidth, in turn, depends on packet size ([page 19](#)) and packet delay ([page 20](#)). For information about calculating available bandwidth, see [Determining Bandwidth Requirements on page 21](#).

For example, to calculate the maximum achievable frame rate of a camera operating at 2448x2048 resolution, 8 bit/pixel format, packet size 1400 bytes and packet delay 1000 ticks:

$$\text{Achievable_frame_rate} = 182 \text{ Mb/s} (\text{page 21}) / 8 \text{ bit/pixel} / (2448 \times 2048)$$

$$\text{Achievable_frame_rate} = 4.5 \text{ FPS}$$

4.3 Supported Formats, Modes and Frame Rates

The tables on the following pages show the supported pixel formats and mode combinations, along with achievable frame rates at varying resolutions, for each camera model.

4.3.1 GS2-GE-20S4 Video Modes and Frame Rates

Mode	Pixel For- mat	Max Size (HxV)	Unit Size (H,V)	Max Frame Rate				
				max res	1280x 960	640x 480	320x 240	160x 120
0	Mono8	1624x1224	8,2	29	35	60	92	126
0	Mono12	1624x1224	8,2	29	35	60	92	126
0	Mono16	1624x1224	8,2	22	35	60	92	126
0	Raw8	1624x1224	8,2	29	35	60	92	126
0	Raw12	1624x1224	8,2	29	35	60	92	126
0	Raw16	1624x1224	8,2	22	35	60	92	126
0	RGB8	1624x1224	8,2	14	23	60	92	126
0	YUV411	1624x1224	8,2	29	35	60	92	126
0	YUV422	1624x1224	8,2	22	35	60	92	126
0	YUV444	1624x1224	8,2	14	23	60	92	126
1	Mono8	812x612	4,2	29	-	35	60	92
1	Mono12	812x612	4,2	29	-	35	60	92
1	Mono16	812x612	4,2	29	-	35	60	92
1	Raw8	812x612	4,2	29	-	35	60	92
1	Raw12	812x612	4,2	29	-	35	60	92
1	Raw16	812x612	4,2	29	-	35	60	92
1	RGB8	812x612	4,2	29	-	35	60	92
1	YUV411	812x612	4,2	29	-	35	60	92
1	YUV422	812x612	4,2	29	-	35	60	92
1	YUV444	812x612	4,2	29	-	35	60	92
4	Mono8	812x612	4,2	52	-	60	92	122
4	Mono12	812x612	4,2	52	-	60	92	122
4	Mono16	812x612	4,2	52	-	60	92	122
4	Raw8	812x612	4,2	52	-	60	92	122
4	Raw12	812x612	4,2	52	-	60	92	122
4	Raw16	812x612	4,2	52	-	60	92	122
4	RGB8	812x612	4,2	52	-	60	92	122
4	YUV411	812x612	4,2	52	-	60	92	122
4	YUV422	812x612	4,2	52	-	60	92	122
4	YUV444	812x612	4,2	52	-	60	92	122
5	Mono8	406x306	2,2	29	-	-	35	60

Mode	Pixel For- mat	Max Size (HxV)	Unit Size (H,V)	Max Frame Rate				
				max res	1280x 960	640x 480	320x 240	160x 120
5	Mono12	406x306	2,2	29	-	-	35	60
5	Mono16	406x306	2,2	29	-	-	35	60
5	RGB8	406x306	2,2	29	-	-	35	60
5	YUV411	406x306	2,2	29	-	-	35	60
5	YUV422	406x306	2,2	29	-	-	35	60
5	YUV444	406x306	2,2	29	-	-	35	60
6	Mono8	406x306	2,2	86	-	-	94	118
6	Mono12	406x306	2,2	86	-	-	94	118
6	Mono16	406x306	2,2	86	-	-	94	118
7	Mono8	1624x1224	8,2	15	19	32	50	68
7	Mono12	1624x1224	8,2	15	19	32	50	68
7	Mono16	1624x1224	8,2	15	19	32	50	68
7	Raw8	1624x1224	8,2	15	19	32	50	68
7	Raw12	1624x1224	8,2	15	19	32	50	68
7	Raw16	1624x1224	8,2	15	19	32	50	68
7	RGB8	1624x1224	8,2	15	19	32	50	68
7	YUV411	1624x1224	8,2	15	19	32	50	68
7	YUV422	1624x1224	8,2	15	19	32	50	68
7	YUV444	1624x1224	8,2	15	19	32	50	68
8	Mono8	1600x1200	8,2	30	36	60	95	130
8	Mono12	1600x1200	8,2	30	36	60	95	130
8	Mono16	1600x1200	8,2	28	36	60	95	130
8	Raw8	1600x1200	8,2	30	36	60	95	130
8	Raw12	1600x1200	8,2	30	36	60	95	130
8	Raw16	1600x1200	8,2	28	36	60	95	130
8	RGB8	1600x1200	8,2	19	29	60	95	130
8	YUV411	1600x1200	8,2	30	36	60	95	130
8	YUV422	1600x1200	8,2	28	36	60	95	130
8	YUV444	1600x1200	8,2	19	29	60	95	130

Table 4.1: Supported video formats and modes for GS2-GE-20S4

4.3.2 GS2-GE-50S5 Video Modes and Frame Rates

Mode	Pixel Format	Max Size (HxV)	Unit Size (H,V)	Max Frame Rate					
				max res	1600x 1200	1280x 960	640x 480	320x 240	160x 120
0	Mono8	2448x2048	8,2	15	21	24	34	42	48
0	Mono12	2448x2048	8,2	14	21	24	34	42	48
0	Mono16	2448x2048	8,2	11	21	24	34	42	48
0	Raw8	2448x2048	8,2	15	21	24	34	42	48
0	Raw12	2448x2048	8,2	14	21	24	34	42	48
0	Raw16	2448x2048	8,2	11	21	24	34	42	48
0	RGB8	2448x2048	8,2	7	19	24	34	42	48
0	YUV411	2448x2048	8,2	14	21	24	34	42	48
0	YUV422	2448x2048	8,2	11	21	24	34	42	48
0	YUV444	2448x2048	8,2	7	19	24	34	42	48
1	Mono8	1224x1024	4,2	15	-	-	24	34	42
1	Mono12	1224x1024	4,2	15	-	-	24	34	42
1	Mono16	1224x1024	4,2	15	-	-	24	34	42
1	Raw8	1224x1024	4,2	15	-	-	24	34	42
1	Raw12	1224x1024	4,2	15	-	-	24	34	42
1	Raw16	1224x1024	4,2	15	-	-	24	34	42
1	RGB8	1224x1024	4,2	15	-	-	24	34	42
1	YUV411	1224x1024	4,2	15	-	-	24	34	42
1	YUV422	1224x1024	4,2	15	-	-	24	34	42
1	YUV444	1224x1024	4,2	15	-	-	24	34	42
4	Mono8	1224x1024	4,2	25	-	-	32	38	42
4	Mono12	1224x1024	4,2	25	-	-	32	38	42
4	Mono16	1224x1024	4,2	25	-	-	32	38	42
4	Raw8	1224x1024	4,2	25	-	-	32	38	42
4	Raw12	1224x1024	4,2	25	-	-	32	38	42
4	Raw16	1224x1024	4,2	25	-	-	32	38	42
4	RGB8	1224x1024	4,2	25	-	-	32	38	42
4	YUV411	1224x1024	4,2	25	-	-	32	38	42
4	YUV422	1224x1024	4,2	25	-	-	32	38	42
4	YUV444	1224x1024	4,2	25	-	-	32	38	42
5	Mono8	612x512	2,2	15	-	-	-	24	34

Mode	Pixel Format	Max Size (HxV)	Unit Size (H,V)	Max Frame Rate					
				max res	1600x 1200	1280x 960	640x 480	320x 240	160x 120
5	Mono12	612x512	2,2	15	-	-	-	24	34
5	Mono16	612x512	2,2	15	-	-	-	24	34
5	RGB8	612x512	2,2	15	-	-	-	24	34
5	YUV411	612x512	2,2	15	-	-	-	24	34
5	YUV422	612x512	2,2	15	-	-	-	24	34
5	YUV444	612x512	2,2	15	-	-	-	24	34
6	Mono8	612x512	2,2	34	-	-	-	34	34
6	Mono12	612x512	2,2	34	-	-	-	34	34
6	Mono16	612x512	2,2	34	-	-	-	34	34
7	Mono8	2448x2048	8,2	15	21	24	34	42	48
7	Mono12	2448x2048	8,2	14	21	24	34	42	48
7	Mono16	2448x2048	8,2	11	21	24	34	42	48
7	Raw8	2448x2048	8,2	15	21	24	34	42	48
7	Raw12	2448x2048	8,2	14	21	24	34	42	48
7	Raw16	2448x2048	8,2	11	21	24	34	42	48
7	RGB8	2448x2048	8,2	7	19	24	34	42	48
7	YUV411	2448x2048	8,2	14	21	24	34	42	48
7	YUV422	2448x2048	8,2	11	21	24	34	42	48
7	YUV444	2448x2048	8,2	7	19	24	34	42	48

Table 4.2: Supported video formats and modes for GS2-GF-50S5

4.4 Configuring Video Format and Mode Using the Camera Registers

The following registers control the video mode and frame rate of the camera. For information about configuring pixel format, see [Video Mode Control and Status Registers on page 129](#).

FRAME RATE: 83Ch

This register provides control over the frame rate of the camera. When this feature is in auto mode, exposure time is limited by the frame rate value dynamically, which is determined by CURRENT_FRAME_RATE register 600h ([page 50](#)). When this feature is in manual mode, the actual frame interval (time between individual image acquisitions) is fixed by the frame rate value. The available frame rate range depends on the current video format and/or video mode.

This register is set to OFF when the camera is operating in asynchronous trigger mode. For more information, see [TRIGGER_MODE: 830h on page 63](#).

Formulas for converting the fixed point (relative) values to floating point (absolute) values are not provided. Users wishing to work with real-world values should refer to the Absolute Value CSRs section of the Appendix (page 134).

Format:

Same format as [BRIGHTNESS: 800h](#) on page 82.

Related Resources

Title	Link
FlyCapture SDK <i>ExtendedShutterEx</i> sample program	ExtendedShutterEx

CURRENT_FRAME_RATE: 600h

Allows the user to query and modify the current frame rate of the camera.

Format:

Field	Bit	Description
Cur_V_Frm_Rate	[0-2]	Current frame rate FrameRate_0 .. FrameRate_7
	[3-31]	Reserved.

CURRENT_VIDEO_FORMAT: 608h

Allows the user to query and modify the current video format of the camera.

Format:

Field	Bit	Description
Cur_V_Format	[0-2]	Current video format Format_0 .. Format_7 Note: GigE Vision cameras operate only in Format_7 mode.
	[3-31]	Reserved.

CURRENT_VIDEO_MODE: 604h

Allows the user to query and modify the current video mode of the camera.

Format:

Field	Bit	Description
Cur_V_Mode	[0-3]	Current video mode Mode_0 .. Mode_8
	[4-31]	Reserved.

5 Image Acquisition and Transmission

5.1 Video Streaming

When image capture is not controlled by a triggering mechanism, the camera can capture images in the following ways:

- Single Frame: A single image is captured and transmitted.
- Multi-Frame: A specified number of images are captured and transmitted, based on the current frame rate.
- Continuous: The camera continuously captures and transmits images, based on the current frame rate.

ISO_EN / CONTINUOUS_SHOT: 614h

This register allows the control of isochronous data transmission. During ISO_EN = 1 or One_Shot = 1 or Multi_Shot = 1, the register value which reflects the Isochronous packet format cannot change. Data transfer control priority is ISO_EN > One_Shot > Multi_Shot.

Format:

Field	Bit	Description
ISO_EN / Continuous Shot	[0]	1 = Start ISO transmission of video data. 0 = Stop ISO transmission of video data. Continuous Shot is not enabled.
	[1-31]	Reserved.

ONE_SHOT / MULTI_SHOT: 61Ch

This register allows the user to control single and multi-shot functionality of the camera. During ISO_EN = 1, One_Shot = 1 or Multi_Shot = 1, the register value which reflects the Isochronous packet format cannot change. Data transfer control priority is ISO_EN > One_Shot > Multi_Shot.

Format:

Field	Bit	Description
One_Shot	[0]	1 = only one frame of video data is transmitted. (Self cleared after transmission) Ignored if ISO_EN = 1
Multi_Shot	[1]	1 = N frames of video data is transmitted. (Self cleared after transmission) Ignored if ISO_EN = 1 or One_Shot = 1
	[2-15]	Reserved.
Count_Number	[16-31]	Count number for Multi-shot function.

5.2 High Dynamic Range (HDR) Imaging

The camera can be set into a High Dynamic Range mode in which it rotates between 4 user-defined shutter and gain settings, applying one gain and shutter value pair per frame. This allows images representing a wide range of shutter and gain settings to be collected in a short time to be combined into a final HDR image later. The camera does not create the final HDR image; this must be done by the user.

The format of the HDR registers is as follows:

Offset	Register	Remarks
0x1800	HDR control register	Toggle bit [6] to enable/disable HDR
0x1820	HDR shutter register for image 0	Similar to SHUTTER register 0x81C
0x1824	HDR gain register for image 0	Similar to GAIN register 0x820
0x1840	HDR shutter register for image 1	Similar to SHUTTER register 0x81C
0x1844	HDR gain register for image 1	Similar to GAIN register 0x820
0x1860	HDR shutter register for image 2	Similar to SHUTTER register 0x81C
0x1864	HDR gain register for image 2	Similar to GAIN register 0x820
0x1880	HDR shutter register for image 3	Similar to SHUTTER register 0x81C
0x1884	HDR gain register for image 3	Similar to GAIN register 0x820

Note that the on/off bit (bit [6]) for the HDR shutter and gain registers is hard-coded to on.

HDR: 1800h – 1884h

This register allows the user to access and control a multiple exposure quick cycle mode, which is useful for high dynamic range (HDR) imaging.

Note that if bit [31] of the FRAME_INFO register 12F8h ([page 104](#)) is set to 1, the camera will embed the current shutter / gain value in the image when bit [6] of HDR_CTRL is set to 1. The image timestamp will be embedded in the first quadlet of image data, the shutter value in the second quadlet, and gain in the third, all in big-endian format.

Format:

Offset	Name	Field	Bit	Description
1800h	HDR_CTRL	Presence_Inq	[0]	Presence of this feature 0: Not available, 1: Available
		-	[1-5]	Reserved
		ON_OFF	[6]	Write: ON or OFF for this feature Read: read a status 0: OFF, 1: ON If this bit = 0, other fields will be read only
		-	[7-31]	Reserved

Offset	Name	Field	Bit	Description
1820h	HDR_SHUTTER_0	Presence_Inq	[0]	Presence of this feature 0: Not available, 1: Available
		-	[1-19]	Reserved
		Value	[20-31]	Query SHUTTER_INQ register 51Ch for range of possible shutter values
1824h	HDR_GAIN_0	Presence_Inq	[0]	Presence of this feature 0: Not available, 1: Available
		-	[1-19]	Reserved
		Value	[20-31]	Query GAIN_INQ register 520h for range of possible gain values
1840h	HDR_SHUTTER_1	Same format as HDR_SHUTTER_0		
1844h	HDR_GAIN_1	Same format as HDR_GAIN_0		
1860h	HDR_SHUTTER_2	Same format as HDR_SHUTTER_0		
1864h	HDR_GAIN_2	Same format as HDR_GAIN_0		
1880h	HDR_SHUTTER_3	Same format as HDR_SHUTTER_0		
1884h	HDR_GAIN_3	Same format as HDR_GAIN_0		

5.3 Asynchronous Triggering

The camera supports a number of asynchronous trigger modes, which allow the start of exposure (shutter) to be initiated by an external electrical source (hardware trigger) or camera register write (software trigger). Supported IIDC modes include: 0, 1, 3, 4, 5, 14 and 15. Trigger Mode 13 is also available, which can be used for reduced smear imaging.

Color models operating in Video Mode_4 (page 44) support Trigger_Mode_4 and Trigger_Mode_5 in monochrome pixel formats only.

5.3.1 External Trigger Timing

The time from the external trigger firing to the start of shutter is shown below:

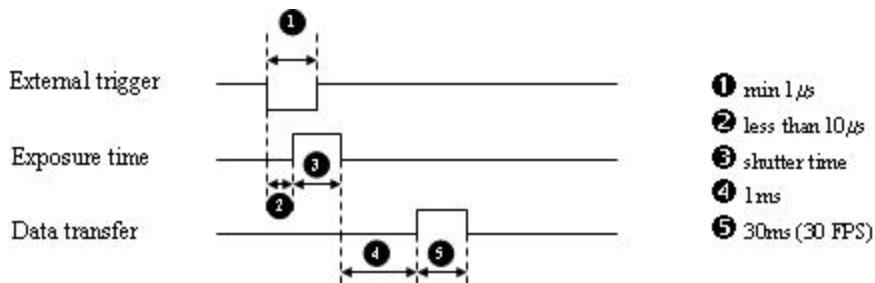


Figure 5.1: External trigger timing characteristics

It is possible for users to measure this themselves by configuring one of the camera's GPIO pins to output a strobe pulse (see [Programmable Strobe Output on page 66](#)) and connecting an oscilloscope up to the input trigger pin and the output strobe pin. The camera will strobe each time an image acquisition is triggered; the start of the strobe pulse represents the start of exposure.

5.3.2 Minimum Trigger Pulse Length

A digital signal debouncer helps to ensure that the camera does not respond to spurious electrical signals that are shorter than 16 ticks of the current pixel clock setting. This safeguard results in a minimum 16-tick delay before the camera responds to a trigger signal. The pixel clock frequency can be read from the floating point `PIXEL_CLOCK_FREQ` register 0x1AF0 ([page 34](#)).

5.3.3 Maximum Frame Rate in External Trigger Mode

Historically, the maximum triggered frame rate has been limited by the camera's inability to overlap image transfer with the trigger input. This limitation applies to trigger modes 0, 1, 3, 4 and 5, where supported. The theoretical maximum triggered frame rate in these modes depends on the shutter time (in seconds) and the maximum frame rate of the camera in free-running mode (in Hz).

This relationship is calculated as follows:

$$\text{Max_Frame_Rate_Trigger} = 1 / (\text{Shutter} + (1 / \text{Max_Frame_Rate_Free_Running}))$$

For example, consider a camera that can acquire 640x480 images at 30Hz in normal “free-running” mode, at a shutter speed of 0.0020s:

$$\text{Max_Frame_Rate_Triggered} = 1 / (0.0020 + (1 / 30)) = 28.30\text{Hz}$$

In contrast, trigger modes 14 and 15, where supported, overlap trigger input with image readout. These modes support external triggering at close to full frame rate.

5.3.4 Camera Behavior Between Triggers

When operating in external trigger mode, the camera clears charges from the sensor at the horizontal pixel clock rate determined by the current frame rate. For example, if the camera is set to 10 FPS, charges are cleared off the sensor at a horizontal pixel clock rate of 15 KHz. This action takes place following shutter integration, until the next trigger is received. At that point, the horizontal clearing operation is aborted, and a final clearing of the entire sensor is performed prior to shutter integration and transmission.

5.3.5 Changing Video Modes While Triggering

You can change the video format and mode of the camera while operating in trigger mode. Whether the new mode that is requested takes effect in the next triggered image depends on the timing of the request and the trigger mode in effect. The diagram below illustrates the relationship between triggering and changing video modes.

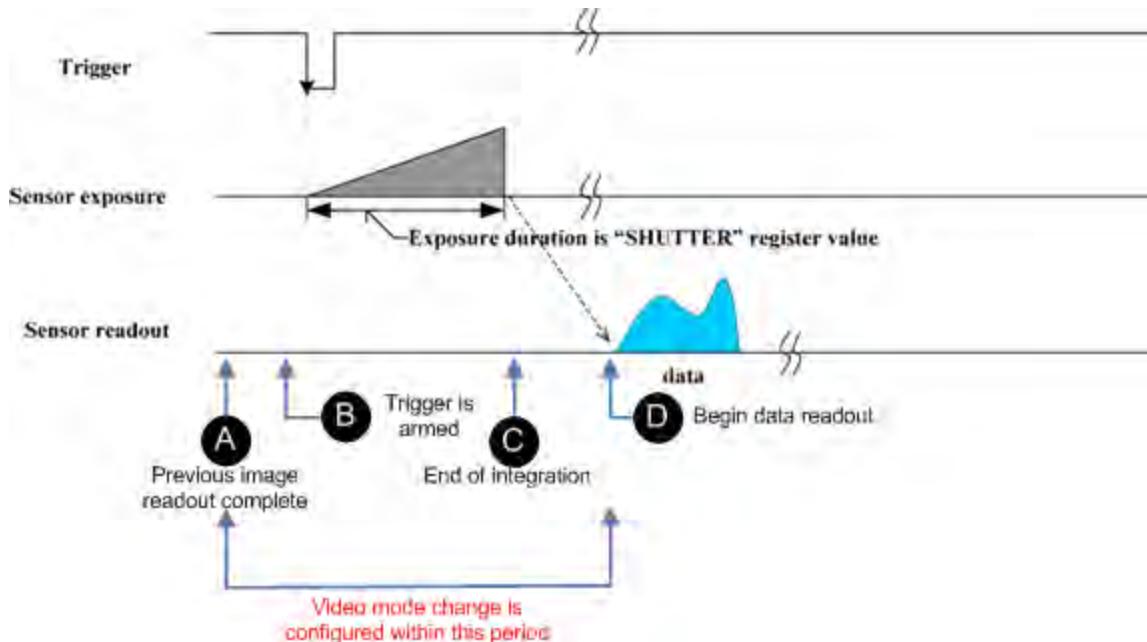


Figure 5.2: Relationship Between External Triggering and Video Mode Change Request

When operating in trigger mode 0 ([page 55](#)) or trigger mode 1 ([page 56](#)), video mode change requests made before point A on the diagram are honored in the next triggered image. The camera will attempt to honor a request made after point A in the next triggered image, but this attempt may or may not succeed, in which case the request is honored one triggered image later. In trigger mode 14 ([page 58](#)), point B occurs before point A. The result is that, in most cases, there is a delay of one triggered image for a video mode request, made before the configuration period, to take effect. In trigger mode 15 ([page 59](#)), change requests made after point A for any given image readout are honored only after a delay of one image.

5.3.6 Supported Trigger Modes

5.3.6.1 Trigger_Mode_0 (“Standard External Trigger Mode”)

Trigger_Mode_0 is best described as the standard external trigger mode. When the camera is put into Trigger_Mode_0, the camera starts integration of the incoming light from external trigger input falling/rising edge. The SHUTTER register describes integration time. No parameter is required. The camera can be triggered in this mode using the GPIO pins as external trigger or the SOFTWARE_TRIGGER (62Ch) register.

It is not possible to trigger the camera at full frame rate using Mode_0; however, this is possible using Trigger_Mode_14.

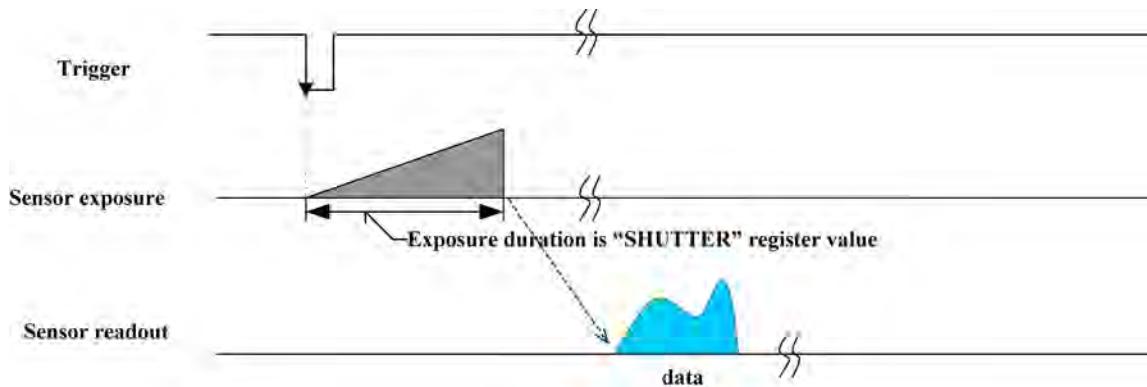


Figure 5.3: Trigger_Mode_0 (“Standard External Trigger Mode”)

5.3.6.2 Trigger_Mode_1 (“Bulb Shutter Mode”)

Also known as Bulb Shutter mode, the camera starts integration of the incoming light from external trigger input. Integration time is equal to low state time of the external trigger input.

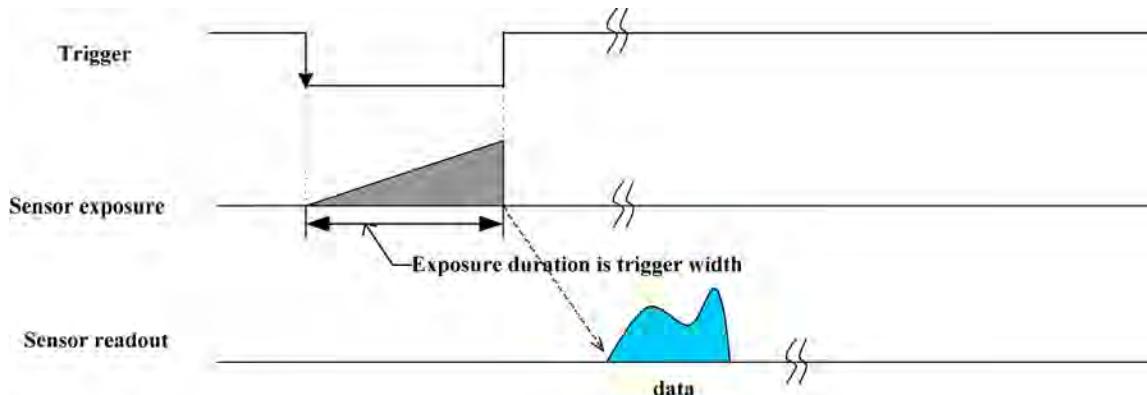


Figure 5.4: Trigger_Mode_1 (“Bulb Shutter Mode”)

5.3.6.3 Trigger_Mode_3 (“Skip Frames Mode”)

Trigger_Mode_3 allows the user to put the camera into a mode where the camera only transmits one out of N specified images. This is an internal trigger mode that requires no external interaction. Where N is the parameter set in bits [20-31] of the TRIGGER_MODE register (offset 830h), the camera will issue a trigger internally at a cycle time that is N times greater than the current frame rate. Again, the SHUTTER register describes integration time.

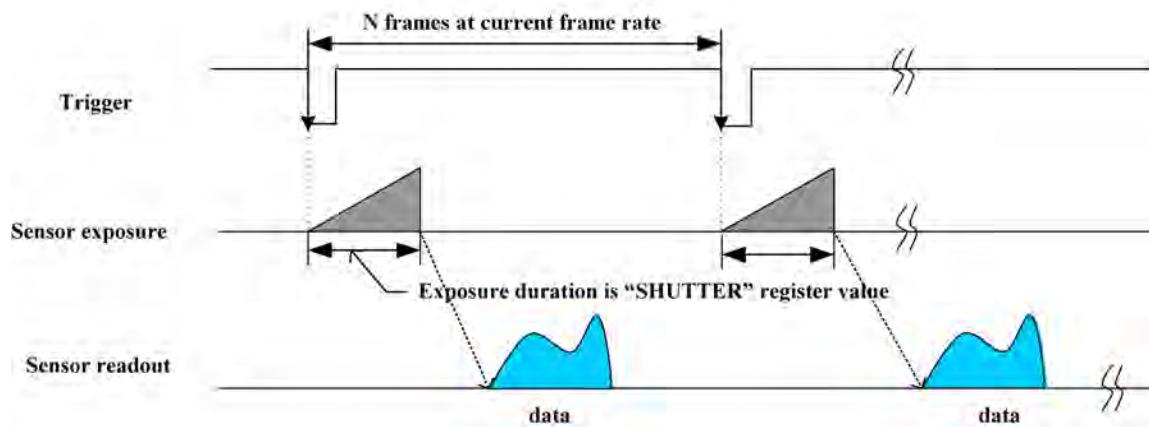


Figure 5.5: Trigger_Mode_3 (“Skip Frames Mode”)

5.3.6.4 Trigger_Mode_4 (“Multiple Exposure Preset Mode”)

Trigger_Mode_4 allows the user to set the number of triggered images to be exposed before the image readout starts. In the case of Trigger_Mode_4, the shutter time is controlled by the SHUTTER CSR value; the minimum resolution of the duration is therefore limited by the shutter resolution.

In the figure below, the camera starts integration of incoming light from the first external trigger input falling edge and exposes incoming light at shutter time. Repeat this sequence for N (parameter) external trigger inputs edge then finish integration. Parameter is required and shall be one or more (N ≥ 1).

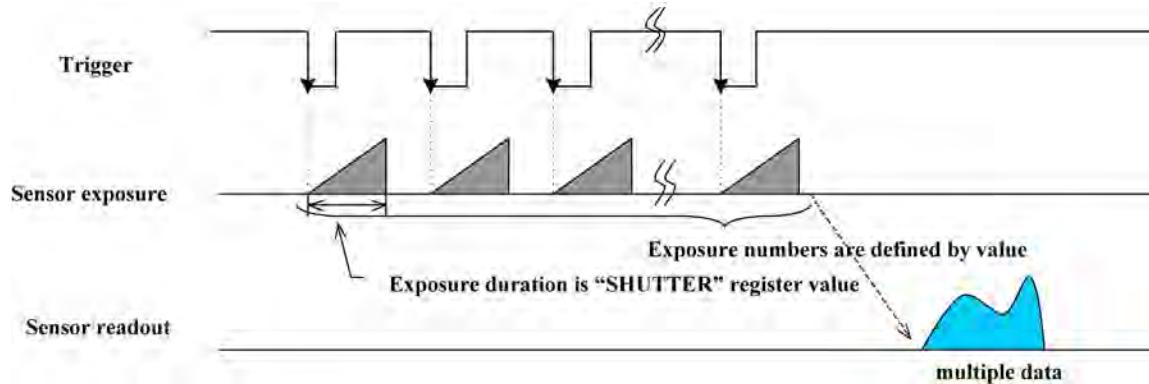


Figure 5.6: Trigger_Mode_4 (“Multiple Exposure Preset Mode”)

5.3.6.5 Trigger_Mode_5 (“Multiple Exposure Pulse Width Mode”)

Trigger_Mode_5 allows the user to set the number of triggered images to be exposed before the image readout starts. In the case of Trigger_Mode_5, the shutter time is controlled by the trigger pulse duration; the minimum resolution of the duration is generally 1 tick of the pixel clock (see [PIXEL_CLOCK_FREQ: 1AF0h on page 34](#)). The resolution also depends on the quality of the input trigger signal and the current TRIGGER_DELAY (page 64).

In the figure below, the camera starts integration of incoming light from the first external trigger input falling edge and exposes incoming light until the trigger is inactive. Repeat this sequence for N

(parameter) external trigger inputs then finish integration. Parameter is required and shall be one or more ($N \geq 1$).

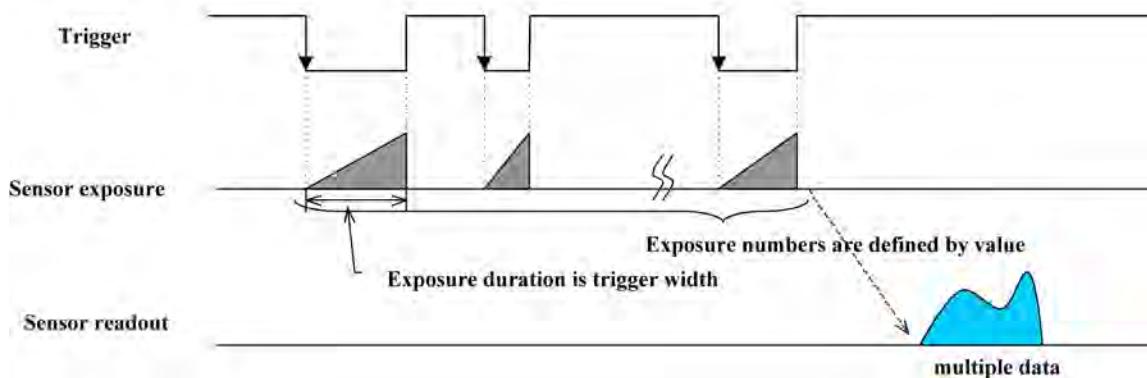


Figure 5.7: Trigger_Mode_5 (“Multiple Exposure Pulse Width Mode”)

5.3.6.6 Trigger_Mode_13 (“Low SmearTrigger Mode”)

Trigger_Mode_13 is a reduced smear imaging mode. This mode is available only on FL3-GE-13S2 models. This mode behaves similarly to standard external trigger mode (Mode_0) (page 55), except exposure does not begin immediately following trigger input. Instead, the trigger input first activates a fast dump off the CCD, which acts to reduce smear in the exposed image to follow. The fast dump period is followed by exposure, which is controlled by the SHUTTER register (page 84) settings. To determine the length of the fast dump period, read the ABS_VAL_TRIGGER_DELAY (Min_Value) register (page 135).

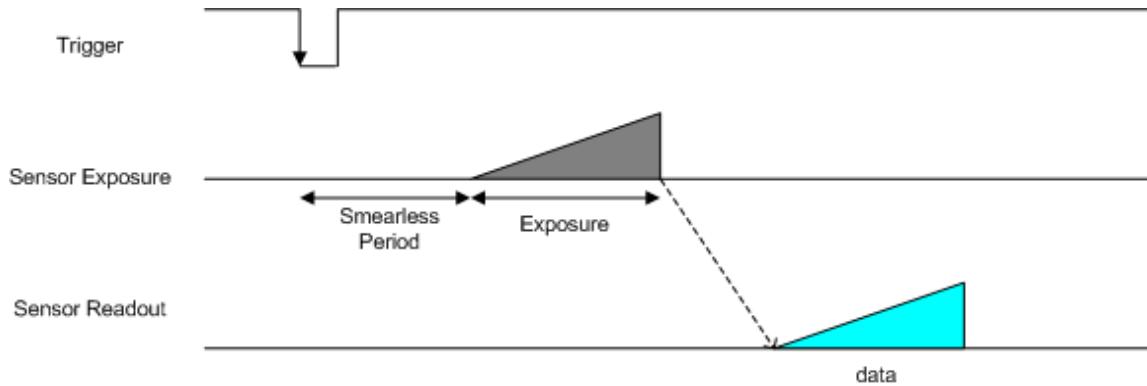


Figure 5.8: Trigger_Mode_13 (“Low Smear Trigger Mode”)

If specifying a trigger delay (TRIGGER_DELAY: 834h on page 64) in this mode, the delay time must be specified as an absolute value, using the ABS_VAL_TRIGGER_DELAY (Value) register (page 135).

5.3.6.7 Trigger_Mode_14 (“Overlapped Exposure / Readout Mode”)

Trigger_Mode_14 is a vendor-unique trigger mode that is very similar to Trigger_Mode_0, but allows for triggering at faster frame rates. This mode works well for users who want to drive exposure start

with an external event. However, users who need a precise exposure start should use Trigger_Mode_0.

In the figure below, the trigger may be overlapped with the readout of the image, similar to continuous shot (free-running) mode. If the trigger arrives after readout is complete, it will start as quickly as the imaging area can be cleared. If the trigger arrives before the end of shutter integration (that is, before the trigger is *armed*([page 61](#))), it is dropped. If the trigger arrives while the image is still being read out of the sensor, the start of exposure will be delayed until the next opportunity to clear the imaging area without injecting noise into the output image. The end of exposure cannot occur before the end of the previous image readout. Therefore, exposure start may be delayed to ensure this, which means priority is given to maintaining the proper exposure time instead of to the trigger start.

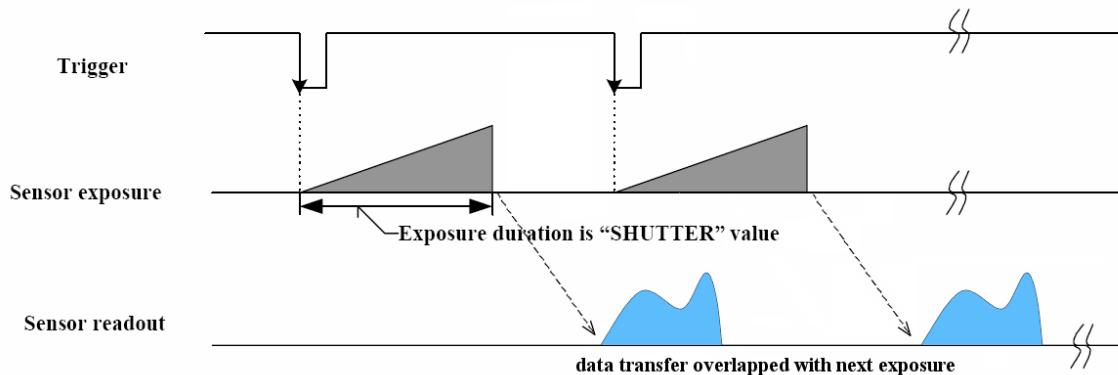


Figure 5.9: Trigger_Mode_14 (“Overlapped Exposure / Readout Mode”)

5.3.6.8 Trigger_Mode_15 (“Multi-Shot Trigger Mode”)

Trigger_Mode_15 is a vendor-unique trigger mode that allows the user to fire a single hardware or software trigger and have the camera acquire and stream a predetermined number of images at the current frame rate.

The number of images to be acquired is determined by the Parameter field of the TRIGGER_MODE register 0x830 ([page 63](#)), which allows up to 255 images to be acquired from a single trigger. Writing a value of 0 to the parameter field will result in an infinite number of images to be acquired, essentially allowing users to trigger the camera into a free-running mode. Once the trigger is fired, the camera will acquire N images with an exposure time equal to the value defined by the SHUTTER register, and stream the images to the host system at the current frame rate. Once this is complete, the camera can be triggered again to repeat the sequence.

Any write to the TRIGGER_MODE register 0x830 will cause the current sequence to stop.

during the capture of N images, the camera is still in an asynchronous trigger mode (essentially Trigger Mode 14), rather than continuous (free-running) mode. The result of this is that the FRAME_RATE register 0x83C will be turned OFF, and the camera put into extended shutter mode (see [Knowledge Base Article 166](#)). Users should therefore ensure that the maximum shutter time is limited to 1/frame_rate to get the N images captured at the current frame rate.

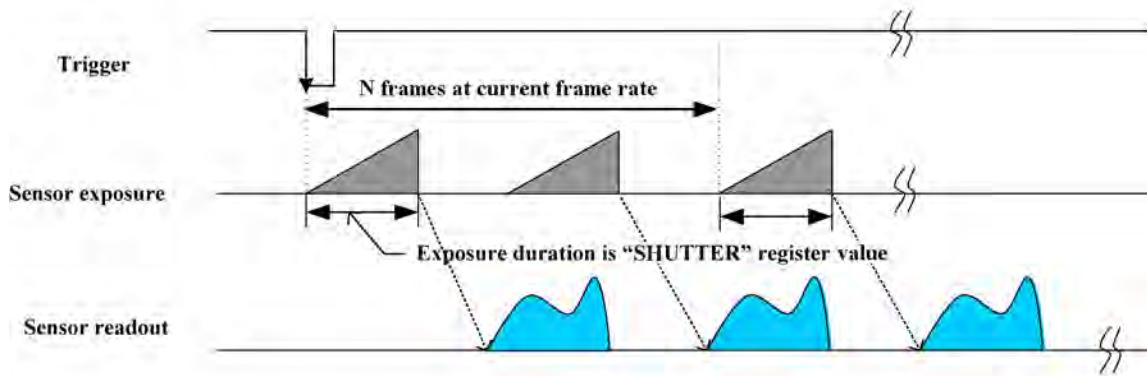


Figure 5.10: Trigger_Mode_15 (“Multi-Shot Trigger Mode”)

5.3.7 Example: Asynchronous Hardware Triggering (Using the Camera Registers)

The following example illustrates how to synchronize image acquisition to a trigger from an external hardware device in trigger Mode_0 ([page 55](#)).

Determine the Default External Trigger Pin

One of the camera GPIO pins is configured as the default trigger. To determine which pin is the default input/trigger pin either:

1. See *General Purpose Input/Output*; or
2. Get the value of the TRIGGER_MODE register 0x830 ([page 63](#)). The *Trigger_Source* field (bits 8-10) is the current trigger source. For example, if the value represented by the *Trigger_Source* field is 0, the default trigger source is GPIO0.

For example:

$0x830 = 0x80100000$

8	0	1	0	0	0	0	0	Hex	
1000	0000	0001	0000	0000	0000	0000	0000	Binary	
0-7		8-15		16-23			24-31		Bits

This indicates that a Trigger Mode is available (bit 0 = 1) but not currently enabled (bit 6 = 0). It also indicates that GPIO0 is the default trigger pin (bits 8-10 = 0), and the default polarity of the pin is active low (bit 7 = 0), which means the camera will trigger on the falling edge of a pulse.

Configure a Different GPIO Pin to be an External Trigger

If you wish to use a different GPIO pin as the external trigger instead of the default trigger, you will need to configure the specific pin to be an input trigger, then configure the camera to use this newly allocated trigger pin.

For example, to configure the camera to use GPIO2 as the external trigger pin:

1. Get the value of the PIO_DIRECTION register 0x11F8 ([page 65](#)) to determine the current states of each GPIO pin. For example:

0x11F8 = 0x20000000								
2	0	0	0	0	0	0	0	Hex
0010	0000	0000	0000	0000	0000	0000	0000	Binary
0-7	8-15		16-23			24-31		Bits

Each of the first four bits represents the current state of its associated GPIO pin: '0' indicates it is a input/trigger, and '1' indicates it is an output/strobe. In the example above, 0x2 = 0010 in binary, so GPIO0, GPIO1 and GPIO 3 are all configured as inputs and GPIO2 is an output.

2. To set GPIO2 in the example above to be an input/trigger, and all other GPIO pins as outputs:

0x11F8 = 0xD0000000								
D	0	0	0	0	0	0	0	Hex
1101	0000	0000	0000	0000	0000	0000	0000	Binary
0-7	8-15		16-23			24-31		Bits

3. Configure the camera to use GPIO2 as the external trigger source by setting bits 8-10 of the TRIGGER_MODE register ([page 63](#)). For example, for GPIO pin "2", we set bits 8-10 to 010, which is 2 in binary):

0x830 = 0x8040000000 (assumes bits 11-31 are zero)

8	0	4	0	0	0	0	0	Hex
1000	0000	0100	0000	0000	0000	0000	0000	Binary
0-7	8-15		16-23			24-31		Bits

Enable Trigger Mode

The camera must be put into Trigger Mode_0 to allow it to be externally triggered.

To do this in the FlyCap graphical user interface:

1. Open the Camera Control Dialog
2. Select the "Trigger" tab
3. Check the "Enable/disable trigger" ("Trigger On/Off" in earlier versions) checkbox

To do this by directly accessing the camera's TRIGGER_MODE register ([page 63](#)):

1. Get register 0x830
2. Turn trigger Mode_0 ON by setting bit 6 to one (1) and setting bits 12-15 to zero (0)

Ensuring Trigger is Armed

It is possible for the camera to be in asynchronous trigger mode but not be ready to accept a trigger. The reason is the camera may be currently exposing an image; the camera is only ready to be

triggered again when this image finishes integrating.

To ensure that the camera is ready to be triggered, poll the SOFTWARE_TRIGGER register 0x62C ([page 65](#)). The concept of polling to ensure the trigger is armed is demonstrated in the [AsyncTriggerEx](#) example program distributed with the *FlyCapture* SDK.

Once the trigger is reporting that it is armed, there should be no delay between when the user can enable isochronous transmission and when they can trigger the camera. In fact, it is possible to trigger the camera before iso is enabled and receive the image that was triggered, provided iso is enabled at some point during exposure. For example, assuming a 10 ms shutter time, it is possible to trigger the camera, enable iso 5 ms after, and still receive the triggered image.

Externally Trigger the Camera

At this point, one of the camera's GPIO pins should be configured as the external trigger source, the camera should be in Trigger Mode_0, and the trigger is armed and ready to be fired. To acquire an image, connect the external 5V or 3.3V TTL synchronization signal to the GPIO pin. Once the trigger signal is received, an image will be grabbed.

5.3.8 Example: Asynchronous Hardware Triggering (Using the FlyCapture API)

The following FlyCapture 2.x code sample uses the C++ interface to do the following:

- Sets the trigger mode to Mode_0.
- Configures GPIO0 as the trigger input source.
- Enables triggered acquisition.
- Specifies the trigger signal polarity as an active high (rising edge) signal.

Assuming a `Camera` object `cam`:

```
TriggerMode mTrigger;

mTrigger.mode = 0;

mTrigger.source = 0;

mTrigger.parameter = 0;

mTrigger.onOff = true;

mTrigger.polarity = 1;

cam.SetTriggerMode (&mTrigger);
```

5.3.9 Asynchronous Software Triggering

Shutter integration can be initiated by a register write (software trigger) via SOFTWARE_TRIGGER register 0x62C ([page 65](#)).

The time from a software trigger initiation to the start of shutter is shown below:

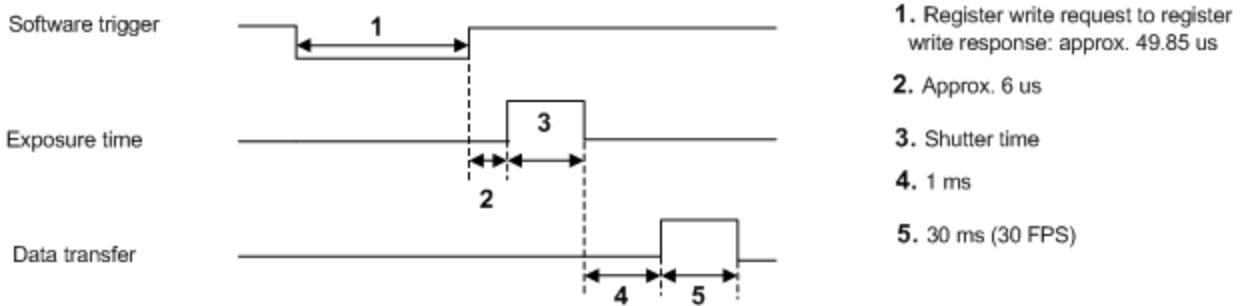


Figure 5.11: Software trigger timing

The time from when the SOFTWARE_TRIGGER register is written on the camera to when the start of integration occurs can only be approximated. The average time from register write request to register write response is approximately 49.85us. The "register write success" response is only sent from the camera to the host system once the internal trigger pulse is initiated. We then add the trigger latency (time from the trigger pulse to the start of integration) to this, which is approximately 6us for a camera capturing 640x480 images. Therefore, the total time from when the register is written to the start of integration is approximately 56us.

This timing is solely from the camera perspective. It is virtually impossible to predict timing from the user perspective due to latencies in the processing of commands on the host PC.

5.3.10 Asynchronous Trigger Registers

For information about working with the trigger registers in your FlyCapture application, refer to the AsyncTriggerEx sample program, available with the FlyCapture SDK.

TRIGGER_MODE: 830h

This register controls the trigger mode. Control of the register is via the *ON_OFF* bit and the *Trigger_Mode* and *Parameter* fields.

*When the *ON_OFF* bit is set to ON (enabling trigger mode), the *FRAME_RATE* register (page 49) is taken out of Auto control state and turned to Off state. This change affects the maximum shutter time. For more information, see Extended Shutter Times (page 83). Additionally, if Auto exposure is enabled (page 87), maximum frame rate may be reduced. When the *ON_OFF* bit is set back to OFF, the *FRAME_RATE* register is not automatically turned back on or returned to Auto control state.*

The *Trigger_Source* bit is used to select which GPIO pin will be used for external trigger purposes.

The *Trigger_Value* bit is used to determine the current raw signal value on the pin.

The *Trigger_Mode* bit is used to set the trigger mode to be used. For more information, see Supported Trigger Modes on page 55.

Format

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A, 1: Available
Abs_Control	[1]	Absolute value control 0: Control with the value in the Value field 1: Control with the value in the Absolute value CSR. If this bit = 1, the value in the Value field is read-only.
	[2-5]	Reserved
ON_OFF	[6]	Write: ON or OFF for this feature Read: read a status 0: OFF, 1: ON If this bit = 0, other fields will be read only
Trigger_Polarity	[7]	Select trigger polarity (except for Software_Trigger) 0: Trigger active low, 1: Trigger active high
Trigger_Source	[8-10]	Select trigger source Sets trigger source ID from <i>Trigger_Source_Inq</i> field of TRIGGER_INQ register (page 125).
Trigger_Value	[11]	Trigger input raw signal value Read only 0: Low, 1: High
	[8-11]	Reserved
Trigger_Mode	[12-15]	Trigger mode (Trigger_Mode_0..15) Sets the trigger mode. Query the <i>Trigger_Mode_Inq</i> fields of the TRIGGER_INQ register for available trigger modes.
	[16-19]	Reserved
Parameter	[20-31]	Parameter for trigger function, if required (optional)

TRIGGER_DELAY: 834h

This register provides control over the time delay between one of the following, depending on the current mode:

1. Asynchronous trigger mode: controls the delay between the trigger event and the start of integration (shutter open).
2. Continuous shot (free-running) mode: controls the synchronization offset of the camera relative to normal synchronization. This is useful for offsetting image acquisition between automatically synchronized cameras. (Not applicable to GigE Vision or USB cameras.)

Delay is in units of a 24.576 MHz clock. Less than 1024 ticks is linear; greater than 1024 ticks is non-linear. Consider using register 950h ABS_VAL_TRIGGER_DELAY (page 135)

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A, 1: Available
Abs_Control	[1]	Absolute value control

Field	Bit	Description
		0: Control with the value in the Value field 1: Control with the value in the Absolute value CSR. If this bit = 1, the value in the Value field is read-only.
	[2-5]	Reserved
ON_OFF	[6]	Write: ON or OFF for this feature Read: read a status 0: OFF, 1: ON If this bit = 0, other fields will be read only
	[7-19]	Reserved
Value	[20-31]	Value.

PIO_DIRECTION: 11F8h

If the *IOx_Mode* bit is asserted (write a '1'), this means the GPIO pin is currently configured as an output and the *Pin_Mode* of the GPIO pin (see the *GPIO_CTRL_PIN_x* register) is *GPIO_Mode_8*. Otherwise, the *Pin_Mode* will be *GPIO_Mode_0* (Input). The *PIO_DIRECTION* register is writeable only when the current *GPIO_Mode* is *GPIO_Mode_0* or *GPIO_Mode_8*.

Format

Field	Bit	Description
IO0_Mode	[0]	Current mode of GPIO Pin 0 0: Other, 1: Output
IO1_Mode	[1]	Current mode of GPIO Pin 1 0: Other, 1: Output
IO2_Mode	[2]	Current mode of GPIO Pin 2 0: Other, 1: Output
IO3_Mode	[3]	Current mode of GPIO Pin 3 0: Other, 1: Output
	[4-31]	Reserved

SOFTWARE_TRIGGER: 62Ch

This register allows the user to generate a software asynchronous trigger.

Format:

Field	Bit	Description
Software_Trigger	[0]	Write: 0: Reset software trigger, 1: Set software trigger This bit automatically resets to zero in all trigger modes except <i>Trigger_Mode</i> = 3. Read: 0: Ready, 1: Busy

5.4 External Device Control

5.4.1 Programmable Strobe Output

The camera is capable of outputting a strobe pulse off select GPIO pins that are configured as outputs. The start of the strobe can be offset from either the start of exposure (free-running mode) or time of incoming trigger (external trigger mode). By default, a pin that is configured as a strobe output will output a pulse each time the camera begins integration of an image.

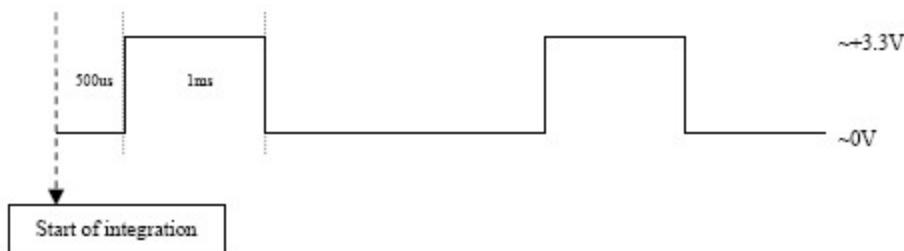
The duration of the strobe can also be controlled. Setting a strobe duration value of zero produces a strobe pulse with duration equal to the exposure (shutter) time.

Multiple GPIO pins, configured as outputs, can strobe simultaneously.

Connecting two strobe pins directly together is not supported. Instead, place a diode on each strobe pin.

The camera can also be configured to output a variable strobe pulse pattern. The strobe pattern functionality allows users to define the frames for which the camera will output a strobe. For example, this is useful in situations where a strobe should only fire:

- Every Nth frame (e.g. odd frames from one camera and even frames from another); or
- N frames in a row out of T (e.g. the last 3 frames in a set of 6); or
- Specific frames within a defined period (e.g. frames 1, 5 and 7 in a set of 8)


Related Knowledge Base Articles

ID	Title	URL
200	Buffering a GPIO pin strobe output signal using an optocoupler to drive external devices	www.ptgrey.com/support/kb/index.asp?a=4&q=200
212	GPIO strobe signal continues after isochronous image transfer stops	www.ptgrey.com/support/kb/index.asp?a=4&q=212

5.4.1.1 Example: Setting a GPIO Pin to Strobe (Using the Camera Registers)

Consider the following example strobe scenario:

- Desired strobe output pin: GPIO2
- Strobe output characteristics: 500us delay from start of shutter, 1ms high duration (see below)

Determine the Default Output Pins

Electrically, general purpose input/output pins are in one of two states: input or output. In order for a GPIO pin to act as a strobe output source, it must be configured as an output. To determine which of the GPIO pins are outputs by default, get the value of the PIO_DIRECTION register 0x11F8 ([page 65](#)). The IOx_Mode fields (bits 0-3) report the current state of the corresponding pin. For example:

0x11F8 = 0x4000 0000								
4	0	0	0	0	0	0	0	Hex
0100	0000	0000	0000	0000	0000	0000	0000	Binary
0-7	8-15	16-23			24-31	Bits		

Each of the first four bits represents the current state of its associated GPIO pin: '0' indicates it is an input/trigger, and '1' indicates it is an output/strobe. In the example above, 0x4 = 0100 in binary, so GPIO1 is configured as an output and GPIO0, GPIO2 and GPIO3 are inputs.

Set the Desired Pin as an Output

Following the example above, assume we want to configure GPIO2 to be an output. To do this, set the appropriate bit of the PIO_DIRECTION register 0x11F8 (in this case bit 2) to '1'. In the example above, we would therefore do the following register write:

0x11F8 = 0x6000 0000

Determine Strobe Support

The next step is to determine whether our desired strobe pin, GPIO2, is capable of outputting a strobe signal. To do this, get the value of the appropriate STROBE_x_INQ register ([page 69](#)); in this case, the STROBE_0_INQ register 0x1408. Assuming we have correctly configured GPIO2 to be an output, we should get a value of:

8	E	0	0	0	F	F	F	Hex
1000	1110	0000	0000	0000	1111	1111	1111	Binary
0-7	8-15	16-23			24-31	Bits		


Bit 0 is a '1', which confirms that the strobe functionality is present on this GPIO pin. Bit 4 points to the ability to read the value of this feature. Bit 5 indicates the ability to turn the strobe on and off, and bit 6 indicates that we can change the strobe signal polarity. Bits 8-19 are '0', which means the minimum strobe duration is zero. Bits 20-31 are '0xFFFF' or 4096 in decimal, so the maximum strobe delay and duration is 4096.

Configure the Desired Pin to Output a Strobe

At this point, GPIO2 is set as an output pin and we know it can be a strobe signal source. Now, we need to enable it as a strobe source by "turning it on" using the GPIO pin's STROBE_x_CNT register ([page 69](#)).

Continuing our example, the desired strobe pin is GPIO2. Therefore, we want to look at the STROBE_2_CNT register 0x1508. The values that we enter in the *Delay_Value* and *Duration_Value* fields of this register are determined as follows: for values up to approximately 0x400 (1024

decimal), each value increment is a tick of a 1.024MHz clock. Values between 0x401 and 0xFF become non-linear in the manner shown in the figure below:

Duration_Value / Delay_Value	Real Time (ms)
0x050	0.078
0x200	0.5
0x400	1
0x600	2
0x800	4
0x900	6
0xA00	8
0xB00	12
0xC00	16
0xD00	24
0xE00	32
0xF00	48
0xFFFF	63.93

For example, to achieve a 500us delay and 1ms duration we calculate:

$$\text{Delay_Value} = 0.0005\text{s} * 1024000\text{Hz} = 512 = 0x200$$

$$\text{Duration_Value} = 0.001\text{s} * 1024000\text{Hz} = 1024 = 0x400$$

To finish configuring GPIO2 to output a strobe pulse of 500us delay from the start of integration and 1ms high duration (high active output), we make the following final register write:

0x1508 = 0x8320 0400

5.4.1.2 Example: Setting a GPIO Pin to Strobe (Using the FlyCapture API)

The following FlyCapture 2.x code sample uses the C++ interface to do the following:

- Configures GPIO1 as the strobe output pin.
- Enables strobe output.
- Specifies an active high (rising edge) strobe signal.
- Specifies that the strobe signal begin 1 ms after the shutter opens.
- Specifies the duration of the strobe as 1.5 ms.

Assuming a `Camera` object `cam`:

```
StrobeControl mStrobe;

mStrobe.source = 1;

mStrobe.parameter = 0;

mStrobe.onOff = true;

mStrobe.polarity = 1;

mStrobe.delay = 1.0f;

mStrobe.duration = 1.5f

cam.SetStrobeControl(&mStrobe);
```

5.4.1.3 Strobe Signal Output Registers

This section describes the control and inquiry registers for the Strobe Signal functionality.

Inquiry Register for Strobe Output CSR Offset Addresses

The following register indicates the locations of the Strobe Output CSR registers. These offsets are relative to the base offset 0xFFFF F0F0 0000.

Offset	Name	Field	Bit	Description
48Ch	STROBE_OUTPUT_CSR_INQ	Strobe_Output_Quadlet_Offset	[0-31]	Quadlet offset of the Strobe output signal CSRs from the base address of initial register space

Current Strobe Output Register Offsets

(Bit values = 0: Not Available, 1: Available)

Format:

Offset	Name	Field	Bit	Description
1300h	STROBE_CTRL_INQ	Strobe_0_Inq	[0]	Presence of strobe 0 signal
		Strobe_1_Inq	[1]	Presence of strobe 1 signal
		Strobe_2_Inq	[2]	Presence of strobe 2 signal

Offset	Name	Field	Bit	Description
		Strobe_3_Inq	[3]	Presence of strobe 3 signal
		-	[4-31]	Reserved
1304h : 13FCh	Reserved			
1400h	STROBE_0_INQ	Presence_Inq	[0]	Presence of this feature
0: N/A 1: Available			[1-3]	Reserved
		ReadOut_Inq	[4]	Ability to read the value of this feature
		On_Off_Inq	[5]	Ability to switch feature ON and OFF
		Polarity_Inq	[6]	Ability to change signal polarity
			[7]	Reserved
		Min_Value	[8-19]	Minimum value for this feature control
		Max_Value	[20-31]	Maximum value for this feature control
1404h	STROBE_1_INQ	Same definition as Strobe_0_Inq		
1408h	STROBE_2_INQ	Same definition as Strobe_0_Inq		
140Ch	STROBE_3_INQ	Same definition as Strobe_0_Inq		
1410h : 14Ch	Reserved			
1500h	STROBE_0_CNT	Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
			[1-5]	Reserved
		On_Off	[6]	Write: ON or OFF this function Read: read a status 0: OFF, 1: ON If this bit = 0, other fields will be read only.
				<i>When ON, strobe signals continue to output after the camera stops streaming images. To stop strobe output, this bit must be explicitly</i>

Offset	Name	Field	Bit	Description
				turned OFF.turned OFF.turned OFF.
		Signal_Polarity	[7]	Select signal polarity If Polarity_Inq is "1": - Write to change strobe output polarity - Read to get strobe output polarity If Polarity_Inq is "0": - Read only 0: Low active output 1: High active output
		Delay_Value	[8-19]	Delay after start of exposure until the strobe signal asserts
		Duration_Value	[20-31]	Duration of the strobe signal A value of 0 means de-assert at the end of exposure, if required.
1504h	STROBE_1_CNT	Same definition as Strobe_0_Cnt		
1508h	STROBE_2_CNT	Same definition as Strobe_0_Cnt		
150Ch	STROBE_3_CNT	Same definition as Strobe_0_Cnt		
1510h-15FFh	Reserved			

GPIO_STRPAT_CTRL: 110Ch

This register provides control over a shared 4-bit counter with programmable period. When the *Current_Count* equals N a GPIO pin will only output a strobe pulse if bit[N] of the *GPIO_STRPAT_MASK_PIN_x* register's *Enable_Pin* field is set to '1'.

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-18]	Reserved
Count_Period	[19-23]	Controls the period of the strobe pattern Valid values: 1..16
	[24-27]	Reserved
Current_Count	[28-31]	Read-only The value of the bit index defined in <i>GPIO_x_STRPAT_MASK</i> that will be used during the next image's strobe. <i>Current_Count</i> increments at the same time as the strobe start signal occurs.

GPIO_STRPAT_MASK_PIN_0: 1118h

This register defines the actual strobe pattern to be implemented by GPIO0 in conjunction with the *Count_Period* defined in GPIO_STRPAT_CTRL register 110Ch ([page 71](#)).

For example, if *Count_Period* is set to '3', bits 16-18 of the *Enable_Mask* can be used to define a strobe pattern. An example strobe pattern might be bit 16=0, bit 17=0, and bit 18=1, which will cause a strobe to occur every three frames (when the *Current_Count* is equal to 2).

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-15]	Reserved
Enable_Mask	[16-31]	Bit field representing the strobe pattern used in conjunction with <i>Count_Period</i> in GPIO_STRPAT_CTRL 0: Do not output a strobe 1: Output a strobe

GPIO_STRPAT_MASK_PIN_1: 1128h

This register defines the actual strobe pattern to be implemented by GPIO1 in conjunction with the *Count_Period* defined in GPIO_STRPAT_CTRL register 110Ch ([page 71](#)).

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-15]	Reserved
Enable_Mask	[16-31]	Bit field representing the strobe pattern used in conjunction with <i>Count_Period</i> in GPIO_STRPAT_CTRL 0: Do not output a strobe 1: Output a strobe

GPIO_STRPAT_MASK_PIN_2: 1138h

This register defines the actual strobe pattern to be implemented by GPIO2 in conjunction with the *Count_Period* defined in GPIO_STRPAT_CTRL register 110Ch ([page 71](#)).

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-15]	Reserved
Enable_Mask	[16-31]	Bit field representing the strobe pattern used in conjunction with <i>Count_Period</i> in GPIO_STRPAT_CTRL

Field	Bit	Description
		0: Do not output a strobe 1: Output a strobe

GPIO_XTRA: 1104h

The GPIO_XTRA register controls when a strobe starts: relative to the start of integration (default) or relative to the time of an asynchronous trigger.

Format:

Field	Bit	Description
Strobe_Start	[0]	Current Mode 0: Strobe start is relative to start of integration (default) 1: Strobe start is relative to external trigger
	[1-31]	Reserved

5.4.2 Pulse Width Modulation (PWM)

When the *Pin_Mode* field of GPIO_CTRL_PIN_x register (page 74) is set to GPIO_MODE_4, pin x will output a specified number of pulses with programmable high and low duration.

The pulse is independent of integration or external trigger. There is only one real PWM signal source (i.e. two or more pins cannot simultaneously output different PWM's), but the pulse can appear on any of the GPIO pins.

The units of time are generally standardized to be in ticks of a 1.024 MHz clock. A separate GPIO pin may be designated as an "enable pin"; the PWM pulses continue only as long as the enable pin is held in a certain state (high or low).

The pin configured to output a PWM signal (PWM pin) remains in the same state at the time the 'enable pin' is disabled. For example, if the PWM is in a high signal state when the 'enable pin' is disabled, the PWM pin remains in a high state. To re-set the pin signal, you must re-configure the PWM pin from GPIO_Mode_4 to GPIO_Mode_1.

To configure the camera to generate an infinite number of PWM pulses, set the *Pwm_Count* to 0xFF (255). To stop the infinite PWM pulse mode, set the *Pwm_Count* to 0x00 (0), or take the GPIO pin out of PWM mode by setting *Pin_Mode* to 0x00 (0).

Format of GPIO_CTRL_PIN_x Register in GPIO_Mode_4

Field	Bit	Description
Presence_Inq	[0]	Value should be '1'
	[1-11]	Reserved
Pin_Mode	[12-15]	Value should be '4'
Pwm_Count	[16-23]	Number of PWM pulses Read: The current count; counts down the remaining pulses. After reaching zero, the count does not automatically reset to

Field	Bit	Description
		the previously-written value. Write: Writing the number of pulses starts the PWM. Write 0xFF for infinite pulses. (Requires write of 0x00 before writing a different value.)
	[24]	Reserved
En_Pin	[25-27]	The GPIO pin to be used as a PWM enable i.e. the PWM continues as long as the En_Pin is held in a certain state (high or low).
	[28]	Reserved
Disable_Pol	[29]	Polarity of the PWM enable pin (En_Pin) that will disable the PWM. For example, if this bit is zero, the PWM will be disabled when the PWM enable pin goes low.
En_En	[30]	0: Disable enable pin (En_Pin) functionality 1: Enable En_Pin functionality
Pwm_Pol	[31]	Polarity of the PWM signal 0: Low, 1: High

GPIO_CTRL_PIN_0: 1110h

This register provides control over the first GPIO pin (Pin 0).

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-11]	Reserved
Pin_Mode	[12-15]	Current GPIO_Mode 0: Input 1: Output 4: Pulse width modulation (PWM)
Data	[16-31]	Data field GPIO_MODE_0 – bit 31 contains value GPIO_MODE_1 – bit 31 contains value GPIO_MODE_4 – see <i>Pulse Width Modulation</i> on previous page

GPIO_XTRA_PIN_0: 1114h

This register contains mode specific data for the first GPIO pin (Pin 0). Units are ticks of a 1.024MHz clock.

Format:

Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_4: Low period of PWM pulse (if Pwm_Pol = 0)
Mode_Specific_2	[16-31]	GPIO_MODE_4: High period of PWM pulse (if Pwm_Pol = 0)

GPIO_CTRL_PIN_1: 1120h

This register provides control over the second GPIO pin (Pin 1).

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-11]	Reserved
Pin_Mode	[12-15]	Current GPIO_Mode 0: Input 1: Output 4: Pulse width modulation (PWM)
Data	[16-31]	Data field GPIO_MODE_0 – bit 31 contains value GPIO_MODE_1 – bit 31 contains value GPIO_MODE_4 – see <i>Pulse Width Modulation</i> on page 73

GPIO_XTRA_PIN_1: 1124h

This register contains mode specific data for the second GPIO pin (Pin 1). Units are ticks of a 1.024MHz clock.

Format:

Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_4: Low period of PWM pulse (if Pwm_Pol = 0)
Mode_Specific_2	[16-31]	GPIO_MODE_4: High period of PWM pulse (if Pwm_Pol = 0)

GPIO_CTRL_PIN_2: 1130h

This register provides control over the third GPIO pin.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-11]	Reserved
Pin_Mode	[12-15]	Current GPIO_Mode 0: Input 1: Output 4: Pulse width modulation (PWM)
Data	[16-31]	Data field GPIO_MODE_0 – bit 31 contains value GPIO_MODE_1 – bit 31 contains value GPIO_MODE_4 – see <i>Pulse Width Modulation</i> on page 73

GPIO_XTRA_PIN_2: 1134h

This register contains mode specific data for the third GPIO pin. Units are ticks of a 1.024MHz clock.

Format:

Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_4: Low period of PWM pulse (if Pwm_Pol = 0)
Mode_Specific_2	[16-31]	GPIO_MODE_4: High period of PWM pulse (if Pwm_Pol = 0)

GPIO_CTRL_PIN_3: 1140h

This register provides control over the fourth GPIO pin.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-11]	Reserved
Pin_Mode	[12-15]	Current GPIO_Mode 0: Input 1: Output 4: Pulse width modulation (PWM)
Data	[16-31]	Data field GPIO_MODE_0 – bit 31 contains value GPIO_MODE_1 – bit 31 contains value GPIO_MODE_4 – see <i>Pulse Width Modulation</i> on page 73

GPIO_XTRA_PIN_3: 1144h

This register contains mode specific data for the fourth GPIO pin. Units are ticks of a 1.024MHz clock.

Format:

Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_4: Low period of PWM pulse (if Pwm_Pol = 0)
Mode_Specific_2	[16-31]	GPIO_MODE_4: High period of PWM pulse (if Pwm_Pol = 0)

5.5 On-Camera Frame Buffer

The camera has 32MB of memory that can be used for temporary image storage. This may be useful in cases such as:

- Retransmission of an image is required due to data loss or corruption.
- Multiple camera systems where there is insufficient bandwidth to capture images in the desired configuration.

All images pass through the frame buffer mechanism. This introduces relatively little delay in the system because the camera does not wait for a full image to arrive in the buffer before starting transmission but rather lags only a few lines behind.

The user can cause images to accumulate in the frame buffer by enabling the *Image_Buffer_Ctrl* bit of IMAGE_RETRANSMIT register 634h ([page 77](#)). This effectively disables the transmission of images in favor of accumulating them in the frame buffer. The user is then required to use the remaining elements of the interface to cause the transmission of the images.

The buffer system is circular in nature, storing only the last 32 MB worth of image data. The number of images that this accommodates depends on the currently configured image size.

The standard user interaction involves the following steps:

1. **Configure the imaging mode.**

This first step involves configuring the format, mode and frame rate in which the camera will acquire images. This can be done by either directly manipulating the registers or using the higher level functionality associated with the software library being used. Depending on the software package, this may involve going so far as to configure the camera, perform bandwidth negotiation and grab an image. In cases where bandwidth is restricted, the user will want to disable transmission and free the bandwidth after the camera is configured.

2. **Enable frame buffer accumulation**

The second step involves enabling the *Image_Buffer_Ctrl* bit of register 634h. Enabling this bit results in images being accumulated in the frame buffer rather than immediately being transmitted.

3. **Negotiate bandwidth with the camera**

Having accumulated some number of images on the camera, bandwidth will have to be renegotiated if it has not been done already. In most cases, this will involve effectively starting the camera in the imaging mode configured in step (1).

4. **Disable isochronous transmission and enable buffered image transfer**

To transfer buffered images, the *ISO_EN / Continuous Shot* field of register 614h must be disabled, and the *Transfer_Data_Select* field of register 634h set to 1.

5. **Transmit images off of the camera**

The final step involves poking the ONE_SHOT/MULTI_SHOT register 61Ch in order to cause the camera to transmit one or more images from the frame buffer over the data interface.

Although it is possible to repeatedly transmit the same image, there is no way to access images that are older than the last image transmitted.

Whether by enabling trigger or disabling isochronous data, switching out of a free running mode leaves the last image transmitted in an undefined state.

The frame buffer is volatile memory that is erased after power cycling. To store images on the camera after power cycling, use [flash memory \(page 36\)](#). Accessing flash memory is significantly slower than accessing the frame buffer, and storage is limited.

IMAGE RETRANSMIT: 634h

This register provides an interface to the camera's frame buffer functionality.

Transmitting buffered data is available when ISO_EN = 0. (See [ISO_EN / CONTINUOUS_SHOT: 614h on page 51](#).) Either One_shot or Multi_shot can be used to transmit buffered data when Transfer_Data_Select = 1. (See [ONE_SHOT / MULTI_SHOT: 61Ch on page 51](#).) Multi_shot is used for transmitting one or more (as specified by Count_Number) buffered images. One_shot is used for retransmission of the last image from the retransmit buffer.

Image data is stored in a circular image buffer when Image_Buffer_Ctrl = 1. If the circular buffer overflows, the oldest image in the buffer is overwritten.

Transmitted data is always stored in the retransmit buffer. If a last or previous image does not exist, (for example, an image has not been acquired since a video format or mode change), the camera still transmits an image from the retransmit buffer, but its contents are undefined.

The image buffer is initialized when Image_Buffer_Ctr is written to '1'. Changing the video format, video mode, image_size, or color_coding causes the image buffer to be initialized and Max_Num_Images to be updated.

Format:

Field	Bit	Description
Image_Buffer_Ctrl	[0]	Image Buffer On/Off Control 0: OFF 1: ON
Transfer_Data_Select	[1]	Transfer data path 0: Live data 1: Buffered image data Ignored if ISO_EN=1
	[2-7]	Reserved
Max_Num_Images	[8-19]	Maximum number of images that can be stored in the current video format. Must be greater than zero. This field is read only.
Number_of_Images	[20-31]	The number of images currently in buffer. This field is read only.

5.5.1 Retransmitting an Image in External Trigger Mode

There are occasions where it might be beneficial to retransmit an image when in an external trigger mode. Having configured the camera to be running in an external trigger mode, the user can cause the camera to retransmit an image by doing the following:

1. Read the current state of the IMAGE_RETRANSMIT register 634h:

Read	634h	00 07 00 00
------	------	-------------

Reading register 634h indicates that the frame buffer mechanism is currently disabled, and in the current imaging mode, the system is capable of storing up to 7 images.

2. Enable image hold:

Write	634h	80 07 00 00
-------	------	-------------

Setting bit 0 of register 634h to 1 enables images to accumulate in the frame buffer.

3. Enable buffered image transfer:

Write	634h	C0 07 00 00
-------	------	-------------

Setting bit 1 of register 634h to 1 enables transfer of buffered image data.

4. Retransmit the last image:

Write	61Ch	80 00 00 00
-------	------	-------------

Setting bit 0 of register 61Ch to 1 causes the last image to be retransmitted.

5. Disable buffered image transfer:

Write	634h	00 07 00 00
-------	------	-------------

Writing 0 to bits 0 and 1 of register 634h disables buffered image hold and transfer, and returns the camera to normal operation.

5.5.2 Storing images for later transmission

Again, assuming the camera is configured to run in an external trigger mode:

1. Read the current state of register 634h:

Read	634h	00 07 00 00
------	------	-------------

Again, this value indicates that the frame buffer mechanism is currently disabled, and in the current imaging mode the system is capable of storing up to 7 images.

2. Enable hold image mode and buffer data transfer:

Write	634h	C0 07 00 00
-------	------	-------------

Setting bits 0 and 1 of register 634h enables image buffer hold and transfer, resulting in images being accumulated in the frame buffer for later transmission.

3. Acquire 4 images:

Write	62Ch	80 00 00 00
Write	62Ch	80 00 00 00

Write	62Ch	80 00 00 00
Write	62Ch	80 00 00 00
Read	634h	C0 07 00 04

Writing to software trigger register 62Ch 4 times causes 4 images to accumulate in the frame buffer. The last 12 bits of register 634h will now indicate that there are 4 images in the frame buffer.

4. Transmit two images:

Write	61Ch	80 00 00 00
Write	61Ch	80 00 00 00
Read	634h	C0 07 00 02

Writing 1 to bit 0 of register 61Ch results in a single image being transmitted and the number of images available being decremented by one. After transmitting two images, a subsequent read of the register indicates that there are two images left.

5.6 Test Pattern

The camera is capable of outputting continuous static images for testing and development purposes. The test pattern image is inserted into the imaging pipeline immediately prior to the transfer to the on-board FIFO, and is therefore not subject to changes in hue, saturation, sharpness, white balance or gamma.

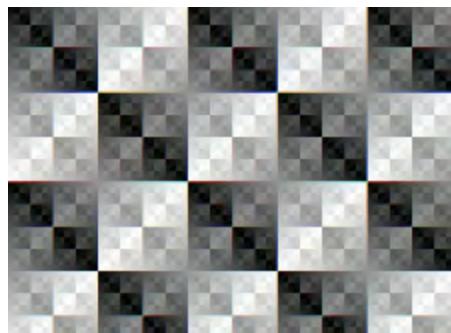


Figure 5.12: Test pattern sample image

TEST_PATTERN: 104Ch**Format:**

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A, 1: Available
	[1-30]	Reserved
Test_Pattern_1	[31]	Value 0: Disable test pattern 1: Enable test pattern

6 Imaging Parameters and Control

6.1 Black Level

The camera supports manual and automatic black level control. Black level, also known as brightness or offset, controls the level of black in an image.

BRIGHTNESS: 800h

Formulas for converting the fixed point (relative) values to floating point (absolute) values are not provided. Users wishing to work with real-world values should refer to the Absolute Value CSRs section of the Appendix (page 134).

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A, 1: Available
Abs_Control	[1]	Absolute value control 0: Control with the value in the Value field 1: Control with the value in the Absolute value CSR. If this bit = 1, the value in the Value field is read-only.
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera only once) Write: 1: Begin to work (self-cleared after operation) Read: 0: Not in operation, 1: In operation If A_M_Mode = 1, this bit is ignored
ON_OFF	[6]	Write: ON or OFF for this feature Read: read a status 0: OFF, 1: ON If this bit = 0, other fields will be read only
A_M_Mode	[7]	Write: set the mode Read: read a current mode 0: Manual, 1: Automatic
	[8-19]	Reserved
Value	[20-31]	Value. A write to this value in 'Auto' mode will be ignored.

6.1.1 Example: Setting Brightness Using the FlyCapture API

The following FlyCapture 2.0 code snippet adjusts brightness to 0.5% using the C++ interface. The snippet assumes a Camera object `cam`.

```

//Declare a Property struct.

Property prop;

//Define the property to adjust.

prop.type = BRIGHTNESS;

//Ensure the property is set up to use absolute value control.

prop.absControl = true;

//Set the absolute value of brightness to 0.5%.
prop.absValue = 0.5;

//Set the property.

error = cam SetProperty( &prop );

```

6.2 Exposure

The camera supports automatic, manual and one-push control of the CCD shutter time. Refer to the *Specifications* section for supported shutter time ranges. Shutter times are scaled by the divider of the basic frame rate. For example, dividing the frame rate by two (e.g. 15 FPS to 7.5 FPS) causes the maximum shutter time to double (e.g. 66ms to 133ms).

The terms “integration” and “exposure” are often used interchangeably with “shutter”.

The time between the end of shutter for consecutive frames will always be constant. However, if the shutter time is continually changing (e.g. shutter is in Auto mode being controlled by Auto Exposure), the time between the beginning of consecutive integrations will change. If the shutter time is constant, the time between integrations will also be constant.

The camera continually exposes and reads image data off of the sensor under the following conditions:

1. The camera is powered up (see *Camera Power*); and
2. The camera is not in asynchronous trigger mode. When in async trigger mode, the camera simply clears the sensor and does not read the data off the sensor.

The camera continues to expose images even when isochronous data transfer is disabled and images are not being streamed to the PC ([See ISO_EN / CONTINUOUS_SHOT: 614h on page 51.](#)). The camera continues exposing images even when ISO is off in order to keep things such as the auto exposure algorithm (if enabled) running. This is done to ensure that when a user starts requesting images (ISO turned on), the first image received is properly exposed.

When operating in free-running mode, changes to the shutter value take effect with the next captured image, or the one after next. Changes to shutter in asynchronous trigger mode generally take effect on the next trigger.

6.2.1 Extended Shutter Times

The maximum shutter time can be extended beyond the normal shutter range by setting the **ON/OFF** bit [6] of the **FRAME_RATE** register 0x83C (page 49) to zero (OFF). Once the **FRAME_RATE** is turned off, you should see the **Max_Value** of the **ABS_VAL_SHUTTER** register (page 135) increase.

The longest possible shutter times are available only when operating the camera in Format_7 Mode_7. For more information about Format_7 modes, see [Video Formats, Modes and Frame Rates on page 43](#).

*The maximum extended shutter time reported by the **SHUTTER_INQ** register 51Ch (page 125) is capped at 4095 (0xFFFF), the maximum value allowed by the **Max_Value** field of this register. Use the **Max_Value** of the **ABS_VAL_SHUTTER** register (page 135) to determine the maximum shutter.*

Related Knowledge Base Articles

ID	Title	URL
166	Extended shutter mode operation for IIDC 1.31-compliant PGR Imaging Products.	www.ptgrey.com/support/kb/index.asp?a=4&q=166

Related Resources

Title	Link
FlyCapture SDK <i>ExtendedShutterEx</i> sample program	ExtendedShutterEx

SHUTTER: 81Ch

This register has three states:

State	Description
Manual/Abs	The shutter value is set by the user via the ABS_VAL_SHUTTER register (page 135). The Value field becomes read only and reflects the converted value of the ABS_VAL_SHUTTER register.
Manual	The user sets the shutter value via the Value field - the ABS_VAL_SHUTTER register becomes read only and contains the current shutter time.
Auto	The shutter value is set by the auto exposure controller (if enabled) (page 87). Both the Value field and the ABS_VAL_SHUTTER register become read only.

Converting fixed-point values to absolute values

The fixed-point (relative) values reported by this register can be converted to absolute values based on the following chart:

Fixed-point Value Range	Equivalent Absolute Value Unit	Equivalent Absolute Value Range
1 to 1024	10 us	0.01 ms to 10.24 ms
1025 to 1536	20 us	10.26 ms to 20.48 ms
1537 to 2048	40 us	20.52 to 40.96 ms
2049 to 2560	80 us	41.04 ms to 81.92 ms
...

The chart above can be expressed in terms of the following formula:

If fixed value <= 1024:

$$\text{absolute_value} = 10 \text{ us} * \text{fixed_value}$$

Else:

$$\text{absolute_value} = 10 \text{ us} * (512 + \text{fixed_value \% 512}) * (2^{**((\text{fixed_value}/512) - 1)})$$

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A, 1: Available
Abs_Control	[1]	Absolute value control 0: Control with the value in the <i>Value</i> field 1: Control with the value in the Absolute value CSR. If this bit = 1, the value in the <i>Value</i> field is ignored.
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera only once) Write: 1: Begin to work (self-cleared after operation) Read: 0: Not in operation, 1: In operation If A_M_Mode = 1, this bit is ignored
ON_OFF	[6]	Write: ON or OFF for this feature Read: read a status 0: OFF, 1: ON If this bit = 0, other fields will be read only
A_M_Mode	[7]	Write: set the mode Read: read a current mode 0: Manual, 1: Automatic
High_Value	[8-19]	Upper 4 bits of the shutter value available only in extended shutter mode (outside of specification).
Value	[20-31]	Value. A write to this value in 'Auto' mode will be ignored.

6.2.2 Example: Setting Shutter Using the FlyCapture API

The following FlyCapture 2.0 code snippet adjusts the shutter speed to 20 ms using the C++ interface. The snippet assumes a `Camera` object `cam`.

```
//Declare a Property struct.

Property prop;

//Define the property to adjust.

prop.type = SHUTTER;

//Ensure the property is on.

prop.onOff = true;

//Ensure auto-adjust mode is off.

prop.autoManualMode = false;

//Ensure the property is set up to use absolute value control.

prop.absControl = true;

//Set the absolute value of shutter to 20 ms.

prop.absValue = 20;

//Set the property.

error = cam SetProperty( &prop );
```

6.3 Gain

The camera supports automatic and one-push gain modes. The A/D converter provides a PxGA gain stage (white balance / preamp) and VGA gain stage. The main VGA gain stage is available to the user, and is variable up to 24 dB in steps of 0.046 dB. On ZBR2-GEHD-50S5C models, gain is configurable in steps of 0.36 dB.

Increasing gain also increases image noise, which can affect image quality. To increase image intensity, try adjusting the lens aperture (iris) and shutter time (page 83) first.

GAIN: 820h

This register has three states:

State	Description
Manual/Abs	The gain value is set by the user via the ABS_VAL_GAIN register (page 135). The Value field becomes read only and reflects the converted absolute value.

State	Description
Manual	The gain value is set by the <i>Value</i> field: the ABS_VAL_GAIN register becomes read only and contains the current gain.
Auto	The gain value is set by the auto exposure controller (if enabled) (page 87): both the <i>Value</i> field and the ABS_VAL_GAIN register become read only.

Formulas for converting the fixed point (relative) values to floating point (absolute) values are not provided. Users wishing to work with real-world values should refer to the Absolute Value CSRs section of the Appendix (page 134).

Format:

Same format as [BRIGHTNESS: 800h](#) on page 82

6.3.1 Example: Setting Gain Using the FlyCapture API

The following FlyCapture 2.0 code snippet adjusts gain to 10.5 dB using the C++ interface, and assumes a `Camera` object `cam`.

```
//Declare a Property struct.

Property prop;

//Define the property to adjust.

prop.type = GAIN;

//Ensure auto-adjust mode is off.

prop.autoManualMode = false;

//Ensure the property is set up to use absolute value control.

prop.absControl = true;

//Set the absolute value of gain to 10.5 dB.

prop.absValue = 10.5;

//Set the property.

error = cam SetProperty( &prop );
```

6.4 Auto Exposure

Auto exposure (AE) allows the camera to automatically control shutter and/or gain in order to achieve a specific average image intensity. Additionally, users can specify the range of allowed values used by the auto-exposure algorithm by using the `AUTO_EXPOSURE_RANGE` (page 88), `AUTO_SHUTTER_RANGE` (page 89) and `AUTO_GAIN_RANGE` (page 89) registers.

The AUTO_EXPOSURE register allows the user to control the camera system's automatic exposure algorithm. It has three useful states:

State	Description
Off	Control of the exposure is achieved via setting both the SHUTTER (page 84) and GAIN (page 86) registers. This mode is achieved by setting the ON_OFF field to be 0. An equivalent mode can be achieved by setting the A_M_Mode fields in the SHUTTER and GAIN registers to 0 (Manual).
ON Manual Exposure Control	The camera automatically modifies the SHUTTER and GAIN registers to try and match the average image intensity to the value written to the <i>Value</i> field. This mode is achieved by setting the A_M_Mode value of the AUTO_EXPOSURE register to 0 (manual) and either/both of the A_M_Mode values for the SHUTTER and GAIN registers to 1 (Auto).
ON Auto Exposure Control	The camera modifies the <i>Value</i> field in order to produce an image that is visually pleasing. This mode is achieved by setting the A_M_MODE for all three of the AUTO_EXPOSURE, SHUTTER and GAIN registers to 1 (Auto). In this mode, the <i>Value</i> field reflects the average image intensity.

Auto exposure can only control the exposure when the SHUTTER and/or GAIN registers have their A_M_Mode bits set. If only one of the registers is in "auto" mode then the auto exposure controller attempts to control the image intensity using just that one register. If both of these registers are in "auto" mode the auto exposure controller uses a shutter-before-gain heuristic to try and maximize the signal-to-noise ratio by favoring a longer shutter time over a larger gain value.

In absolute mode, an exposure value (EV) of 0 indicates the average intensity of the image is 18% of 1023 (18% gray).

Formulas for converting the fixed point (relative) values to floating point (absolute) values are not provided. Users wishing to work with real-world values should refer to the Absolute Value CSRs section of the Appendix ([page 134](#)).

The auto exposure algorithm is only applied to the active region of interest, and not the entire array of active pixels.

AUTO_EXPOSURE: 804h

Format:

Same format as [SHUTTER: 81Ch on page 84](#).

AUTO_EXPOSURE_RANGE: 1088h

Specifies the range of allowed exposure values to be used by the automatic exposure controller when in auto mode. Fixed point (relative) values must be specified. Do not specify absolute values.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available

Field	Bit	Description
	[1-7]	Reserved
Min_Value	[8-19]	Lower bound
Max_Value	[20-31]	Upper bound

AUTO_SHUTTER_RANGE: 1098h

Allows the user to specify the range of shutter values to be used by the automatic exposure controller - generally some subset of the entire shutter range described by SHUTTER_INQ register 51Ch ([page 125](#)). Fixed point (relative) values must be specified. Do not specify absolute values.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-5]	Reserved
Min_Dark_Noise	[6]	Minimizes dark current noise with extended shutter times. This feature is currently experimental. 0: Disable dark noise minimization 1: Enable dark noise minimization
	[7]	Reserved
Min_Value	[8-19]	Lower bound
Max_Value	[20-31]	Upper bound

The actual range used is further restricted to match the current grab mode (see SHUTTER register 81Ch [on page 84](#) for the list of ranges).

AUTO_GAIN_RANGE: 10A0h

Allows the user to specify the range of gain values to be used by the automatic exposure controller - generally some subset of the entire gain range described by GAIN_INQ register 520h ([page 125](#)).

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-5]	Reserved
ON_OFF	[6]	Write: ON or OFF for this feature Read: read a status 0: OFF 1: ON If this bit = 0, other fields will be read only
	[7]	Reserved

Field	Bit	Description
Min_Value	[8-19]	Lower bound
Max_Value	[20-31]	Upper bound

AE_ROI: 1A70 – 1A74h

This register allows the user to specify a region of interest within the full image to be used for both auto exposure and white balance. The ROI position and size are relative to the transmitted image. If the request ROI is of zero width or height, the entire image will be used.

Format:

Offset	Name	Field	Bit	Description
1A70h	AE_ROI_CTRL	Presence_Inq	[0]	Presence of this feature 0:Not available 1: Available
			[1-5]	Reserved
		ON_OFF	[6]	Write: ON or OFF for this feature Read: read a status 0: OFF, 1: ON If this bit = 0, other fields will be read only
			[7-31]	Reserved
1A74h	AE_ROI_OFFSET		[0-31]	Quadlet offset of the base address for the ROI CSR's
Base+0h (1C40h)	AE_ROI_UNIT_POSITION_INQ	Hposunit	[0-15]	Horizontal units for position
		Vposunit	[16-31]	Vertical units for position
Base+4h (1C44h)	AE_ROI_UNIT_SIZE_INQ	Hunit	[0-15]	Horizontal units for size
		Vunit	[16-31]	Vertical units for size
Base+8h (1C48h)	AE_ROI_POSITION	Left	[0-15]	Left position of ROI
		Top	[16-31]	Top position of ROI
Base+C _h (1C4Ch)	AE_ROI_SIZE	Width	[0-15]	Width of ROI
		Height	[16-31]	Height of ROI

6.4.1 Example Setting Auto Exposure Using the FlyCapture2 API

The following FlyCapture 2.0 code snippet adjusts auto exposure to -3.5 EV using the C++ interface. The snippet assumes a Camera object `cam`.

```
//Declare a Property struct.

Property prop;

//Define the property to adjust.
```

```
prop.type = AUTO_EXPOSURE;  
  
//Ensure the property is on.  
  
prop.onOff = true;  
  
//Ensure auto-adjust mode is off.  
  
prop.autoManualMode = false;  
  
//Ensure the property is set up to use absolute value control.  
  
prop.absControl = true;  
  
//Set the absolute value of auto exposure to -3.5 EV.  
  
prop.absValue = -3.5;  
  
//Set the property.  
  
error = cam SetProperty( &prop );
```

6.5

Gamma and Lookup Table

The camera supports gamma correction of pixel intensity. CCD manufacturers strive to make the transfer characteristics of CCDs inherently linear, which means that as the number of photons hitting the imaging sensor increases, the resulting image intensity increases are linear. Gamma can be used to apply a non-linear mapping of the images produced by the camera. Gamma is applied after analog-to-digital conversion. Gamma is available in all pixel formats. By default, Gamma is ON and has a value of 1.0, which yields a linear response. Gamma values between 0.5 and 1 result in decreased brightness effect, and gamma values between 1 and 4 produce an increased brightness effect.

Alternatively, the camera has a 9-bit input lookup table that produces a 9-bit output. The LUT has two banks that the user can select between. In RGB and YUV pixel formats, the LUT has three channels for red, green, and blue. In monochrome and raw formats, there is a single channel, regardless of color or monochrome sensor. The LUT is available only in 8 bit/pixel formats.

GAMMA: 818h

This register provides a mechanism to control the function used to non-linearly map a higher bit depth image produced by the sensor to the requested number of bits.

Formulas for converting the fixed point (relative) values to floating point (absolute) values are not provided. Users wishing to work with real-world values should refer to the Absolute Value CSRs section of the Appendix (page 134).

Format:

Same format as [BRIGHTNESS: 800h on page 82](#).

When ON is written to the ON_OFF field, the ON_OFF field of the LUT register (page 92) is turned to OFF.

LUT: 80000h – 80048h

This register allows the user to access and control a lookup table (LUT), with entries stored on-board the camera. The LUT will also be modified under the following circumstances:

- Camera reinitialization via the INITIALIZE register 000h
- Changing the CURRENT_VIDEO_MODE or CURRENT_VIDEO_FORMAT registers 604h or 608h
- Changing the GAMMA register 818h or ABS_VAL_GAMMA register

The look up table function can define up to 16 banks where each bank can contain up to 16 channels. Each channel shall define a table with a length of $2^{\text{Input_Depth}}$ entries where each entry is Output_Depth bits wide. Channel table entries shall be padded to 32 bits or a complete quadlet.

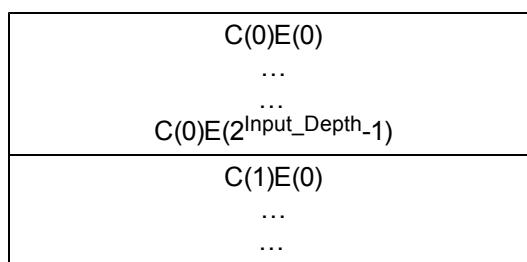
Each bank may be read only, write only or both read and write capable as shown by the *LUT_Bank_Rd_Inq* and *LUT_Bank_Wr_Inq* fields. The active bank shall be set by writing to the *Active_Bank* field of the LUT_Ctrl register.

The *Bank_X_Offset_Inq* register shall give the offset to start address of the array of channel tables in each bank. Multiple channels can be used to process color video pixel data.

Offset	Name	Field	Bit	Description
80000h	LUT_Ctrl_Inq (Read Only)	Presence_Inq	[0]	Presence of this feature 0:N/A 1:Available
			[1..4]	Reserved
		ON_OFF_Inq	[5]	Capability of turning this feature ON or OFF.
			[6..7]	Reserved
		Input_Depth	[8..12]	Input data bit depth
		Output_Depth	[13..17]	Output data bit depth
			[18]	Reserved
		Number_of_Channels	[19..23]	Number of channels
			[24..26]	Reserved
		Number_of_Banks	[27..31]	Number of banks
80004h	LUT_Bank_Rd_Inq	Read_Bank_0_Inq	[0]	Capability of reading data from Bank 0

Offset	Name	Field	Bit	Description
		Read_Bank_1_Inq	[1]	Capability of reading data from Bank 1
		Read_Bank_2_Inq	[2]	Capability of reading data from Bank 2
		Read_Bank_3_Inq	[3]	Capability of reading data from Bank 3
		Read_Bank_4_Inq	[4]	Capability of reading data from Bank 4
		Read_Bank_5_Inq	[5]	Capability of reading data from Bank 5
		Read_Bank_6_Inq	[6]	Capability of reading data from Bank 6
		Read_Bank_7_Inq	[7]	Capability of reading data from Bank 7
		Read_Bank_8_Inq	[8]	Capability of reading data from Bank 8
		Read_Bank_9_Inq	[9]	Capability of reading data from Bank 9
		Read_Bank_10_Inq	[10]	Capability of reading data from Bank 10
		Read_Bank_11_Inq	[11]	Capability of reading data from Bank 11
		Read_Bank_12_Inq	[12]	Capability of reading data from Bank 12
		Read_Bank_13_Inq	[13]	Capability of reading data from Bank 13
		Read_Bank_14_Inq	[14]	Capability of reading data from Bank 14
		Read_Bank_15_Inq	[15]	Capability of reading data from Bank 15
	LUT_Bank_Wr_Inq	Write_Bank_0_Inq	[16]	Capability of writing data to Bank 0
		Write_Bank_1_Inq	[17]	Capability of writing data to Bank 1
		Write_Bank_2_Inq	[18]	Capability of writing data to Bank 2
		Write_Bank_3_Inq	[19]	Capability of writing data to Bank 3
		Write_Bank_4_Inq	[20]	Capability of writing data to Bank 4

Offset	Name	Field	Bit	Description
		Write_Bank_5_Inq	[21]	Capability of writing data to Bank 5
		Write_Bank_6_Inq	[22]	Capability of writing data to Bank 6
		Write_Bank_7_Inq	[23]	Capability of writing data to Bank 7
		Write_Bank_8_Inq	[24]	Capability of writing data to Bank 8
		Write_Bank_9_Inq	[25]	Capability of writing data to Bank 9
		Write_Bank_10_Inq	[26]	Capability of writing data to Bank 10
		Write_Bank_11_Inq	[27]	Capability of writing data to Bank 11
		Write_Bank_12_Inq	[28]	Capability of writing data to Bank 12
		Write_Bank_13_Inq	[29]	Capability of writing data to Bank 13
		Write_Bank_14_Inq	[30]	Capability of writing data to Bank 14
		Write_Bank_15_Inq	[31]	Capability of writing data to Bank 15
80008h	LUT_Ctrl	Presence_Inq	[0]	Presence of this Feature 0: N/A 1: Available
			[1..4]	Reserved
		ON_OFF	[5]	Write: ON or OFF this feature Read: read a status 0: OFF 1: ON When ON is written, the ON_OFF field of the GAMMA register (page 91) is turned to OFF.
			[6..27]	Reserved
		Active_Bank	[28..31]	Active bank
8000Ch	Bank_0_Offset_Inq	Bank_0_Quadlet_Offset	[0..31]	Quadlet offset of Bank 0 table data
80010h	Bank_1_Offset_Inq	Bank_1_Quadlet_Offset	[0..31]	Quadlet offset of Bank 1 table data
80014h	Bank_2_Offset_Inq	Bank_2_Quadlet_Offset	[0..31]	Quadlet offset of Bank 2 table data
80018h	Bank_3_Offset_Inq	Bank_3_Quadlet_Offset	[0..31]	Quadlet offset of Bank 3 table data
8001Ch	Bank_4_Offset_Inq	Bank_4_Quadlet_Offset	[0..31]	Quadlet offset of Bank 4 table data


Offset	Name	Field	Bit	Description
80020h	Bank_5_Offset_Inq	Bank_5_Quadlet_Offset	[0..31]	Quadlet offset of Bank 5 table data
80024h	Bank_6_Offset_Inq	Bank_6_Quadlet_Offset	[0..31]	Quadlet offset of Bank 6 table data
80028h	Bank_7_Offset_Inq	Bank_7_Quadlet_Offset	[0..31]	Quadlet offset of Bank 7 table data
8002Ch	Bank_8_Offset_Inq	Bank_8_Quadlet_Offset	[0..31]	Quadlet offset of Bank 8 table data
80030h	Bank_9_Offset_Inq	Bank_9_Quadlet_Offset	[0..31]	Quadlet offset of Bank 9 table data
80034h	Bank_10_Offset_Inq	Bank_10_Quadlet_Offset	[0..31]	Quadlet offset of Bank 10 table data
80038h	Bank_11_Offset_Inq	Bank_11_Quadlet_Offset	[0..31]	Quadlet offset of Bank 11 table data
8003Ch	Bank_12_Offset_Inq	Bank_12_Quadlet_Offset	[0..31]	Quadlet offset of Bank 12 table data
80040h	Bank_13_Offset_Inq	Bank_13_Quadlet_Offset	[0..31]	Quadlet offset of Bank 13 table data
80044h	Bank_14_Offset_Inq	Bank_14_Quadlet_Offset	[0..31]	Quadlet offset of Bank 14 table data
80048h	Bank_15_Offset_Inq	Bank_15_Quadlet_Offset	[0..31]	Quadlet offset of Bank 15 table data

Lookup Table Data Structure

Each bank of channels is composed of entries padded to a complete 32-bit quadlet. Each bank is organized as shown in the table below.

C_n: Channel Number

E_n : Entry Number

C(1)E(2 ^{Input_Depth-1})
...
...
...
C(Number_of_Channels-1)E(0)
...
...
C(Number_of_Channels-1) E(2 ^{Input_Depth-1})

6.5.1 Example: Setting Gamma Using the FlyCapture API

The following FlyCapture 2.0 code snippet adjusts gamma to 1.5 using the C++ interface. The snippet assumes a `Camera` object `cam`.

```
//Declare a Property struct.

Property prop;

//Define the property to adjust.

prop.type = GAMMA;

//Ensure the property is on.

prop.onOff = true;

//Ensure the property is set up to use absolute value control.

prop.absControl = true;

//Set the absolute value of gamma to 1.5

prop.absValue = 1.5;

//Set the property.

error = cam SetProperty( &prop );
```

6.6 Saturation

The camera supports saturation adjustment of color values.

Saturation in this context does not refer to the saturation of a CCD charge.

SATURATION: 814h

This register provides a mechanism to control the Saturation component of the images being produced by the camera, given a standard Hue, Saturation, Value (HSV) color space.

Formulas for converting the fixed point (relative) values to floating point (absolute) values are not provided. Users wishing to work with real-world values should refer to the Absolute Value CSRs section of the Appendix (page 134).

Format:

Same format as [BRIGHTNESS: 800h](#) on page 82.

6.6.1 Example: Setting Saturation Using the FlyCapture API

The following FlyCapture 2.0 code snippet adjusts saturation to 200% using the C++ interface. The snippet assumes a Camera object `cam`.

```
//Declare a property struct.  
  
Property prop;  
  
//Define the property to adjust.  
  
prop.type = SATURATION;  
  
//Ensure the property is on.  
  
prop.onOff = true;  
  
//Ensure auto-adjust mode is off.  
  
prop.autoManualMode = false;  
  
//Ensure the property is set up to use absolute value control.  
  
prop.absControl = true;  
  
//Set the absolute value of saturation to 200%.  
  
prop.absValue = 200;  
  
//Set the property.  
  
error = cam SetProperty( &prop );
```

6.7 Hue

The camera supports hue adjustment, which defines the color phase of images.

HUE: 810h

This register provides a mechanism to control the Hue component of the images being produced by the camera, given a standard Hue, Saturation, Value (HSV) color space.

Formulas for converting the fixed point (relative) values to floating point (absolute) values are not provided. Users wishing to work with real-world values should refer to the Absolute Value CSRs section of the Appendix (page 134).

Format:

Same format as [BRIGHTNESS: 800h](#) on page 82.

6.7.1 Example: Setting Hue Using the FlyCapture API

The following FlyCapture 2.0 code snippet adjusts hue to -30 deg. using the C++ interface. The snippet assumes a `Camera` object `cam`.

```
//Declare a Property struct.  
  
Property prop;  
  
//Define the property to adjust.  
  
prop.type = HUE;  
  
//Ensure the property is on.  
  
prop.onOff = true;  
  
//Ensure the property is set up to use absolute value control.  
  
prop.absControl = true;  
  
//Set the absolute value of hue to -30 deg.  
  
prop.absValue = -30;  
  
//Set the property.  
  
error = cam SetProperty( &prop );
```

6.8 Sharpness

The camera supports sharpness adjustment, which refers to the filtering of an image to reduce blurring at image edges. Sharpness is implemented as an average upon a 3x3 block of pixels, and is only applied to the green component of the Bayer tiled pattern. For sharpness values greater than 1000, the pixel is sharpened; for values less than 1000 it is blurred. When sharpness is in auto mode and gain is low, then a small amount of sharpening is applied, which increases as gain decreases. If gain is high, a small amount of blur is applied, increasing as gain increases.

When the camera is outputting raw Bayer data, Sharpness is OFF by default. Otherwise, the default setting is ON.

SHARPNESS: 808h

Format:

Same format as [BRIGHTNESS: 800h on page 82](#).

6.8.1 Example: Setting Sharpness Using the FlyCapture API

The following FlyCapture 2.0 code snippet adjusts sharpness to 1500 using the C++ interface. The snippet assumes a Camera object `cam`.

```
//Declare a Property struct.  
  
Property prop;  
  
//Define the property to adjust.  
  
prop.type = SHARPNESS;  
  
//Ensure the property is on.  
  
prop.onOff = true;  
  
//Ensure auto-adjust mode is off.  
  
prop.autoManualMode = false;  
  
//Set the value of sharpness to 1500.  
  
prop.valueA = 1500;  
  
//Set the property.  
  
error = cam SetProperty( &prop );
```

6.9 White Balance

The camera supports white balance adjustment, which is a system of color correction to account for differing lighting conditions. Adjusting white balance by modifying the relative gain of R, G and B in an image enables white areas to look "whiter". Taking some subset of the target image and looking at the relative red to green and blue to green response, the objective is to scale the red and blue channels so that the response is 1:1:1. The blue and red values can be controlled using the `WHITE_BALANCE` register 0x80C ([page 100](#)).

The camera also implements Auto and One_Push white balance. One use of One_Push / Auto white balance is to obtain a similar color balance between cameras that are slightly different from each other. In theory, if different cameras are pointed at the same scene, using One_Push / Auto will result in a similar color balance between the cameras.

One_Push only attempts to automatically adjust white balance for a set period of time before stopping. It uses a "white detection" algorithm that looks for "whitish" pixels in the raw Bayer image data. One_Push adjusts the white balance for a specific number of iterations; if it cannot locate any

whitish pixels, it will gradually look at the whitest objects in the scene and try to work off them. It will continue this until has completed its finite set of iterations.

Auto is continually adjusting white balance. It differs from One_Push in that it works almost solely off the whitest objects in the scene.

The white balance of the camera before using One_Push/Auto must already be relatively close; that is, if Red is set to 0 and Blue is at maximum (two extremes), One_Push/Auto will not function as expected. However, if the camera is already close to being color balanced, then One_Push/Auto will function properly.

White balance may be unresponsive in auto mode if auto exposure (page 88) is < 0.1 EV (approximately).

WHITE_BALANCE: 80Ch

This register controls the relative gain of pixels in the Bayer tiling used in the CCD of a color camera. Control of the register is achieved via the *R_Value* and *B_Value* fields and the *On_Off* bit. Both value fields specify relative gain, with a value that is half the maximum value being a relative gain of zero. This register has two states:

- OFF - the same gain is applied to all pixels in the Bayer tiling.
- ON - the *R_Value* field is applied to the red pixels of the Bayer tiling and the *B_Value* field is applied to the blue pixels of the Bayer tiling.

The following table illustrates the default gain settings for most cameras.

	Red	Blue
Black and White	32	32
Color	1023	1023

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A, 1: Available
Abs_Control	[1]	Absolute value control 0: Control with value in the Value field 1: Control with value in the associated Abs Value CSR If this bit is 1, then Value is ignored
	[2-4]	Reserved

Field	Bit	Description
One_Push	[5]	One push auto mode (controlled automatically by camera only once) Write: 1: Begin to work (self-cleared after operation) Read: 0: Not in operation, 1: In operation If A_M_Mode = 1, this bit is ignored
ON_OFF	[6]	Write: ON or OFF for this feature Read: read a status 0: OFF, 1: ON If this bit = 0, other fields will be read only
A_M_Mode	[7]	Write: Set the mode. Read: read the current mode. 0: Manual, 1: Auto
U_Value / B_Value	[8-19]	Blue Value. A write to this value in 'Auto' mode will be ignored.
V_Value / R_Value	[20-31]	Red Value. A write to this value in 'Auto' mode will be ignored.

6.9.1 Example: Setting White Balance Using the FlyCapture API

The following FlyCapture 2.0 code snippet adjusts the white balance red channel to 500 and the blue channel to 850 using the C++ interface. The snippet assumes a `Camera` object `cam`.

```

//Declare a Property struct.

Property prop;

//Define the property to adjust.

prop.type = WHITE_BALANCE;

//Ensure the property is on.

prop.onOff = true;

//Ensure auto-adjust mode is off.

prop.autoManualMode = false;

//Set the white balance red channel to 500.

prop.valueA = 500;

//Set the white balance blue channel to 850.

prop.valueB = 850;

//Set the property.

error = cam SetProperty( &prop );

```

6.10 Bayer Color Processing

In color models, a Bayer tile pattern color filter array captures the intensity red, green or blue in each pixel on the sensor. The image below is an example of a Bayer tile pattern. To determine the actual pattern on your camera, query the BAYER_TILE_MAPPING register 1040h ([page 103](#)).

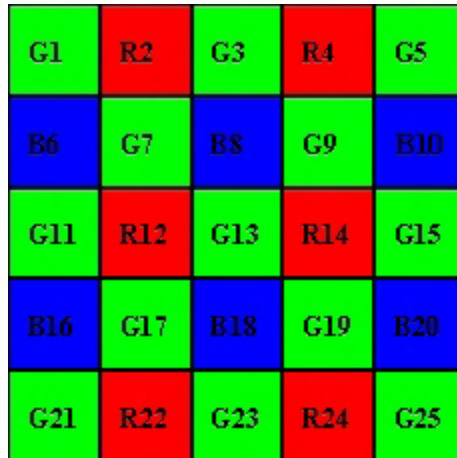


Figure 6.1: Example Bayer tile pattern

In order to produce color (e.g. RGB, YUV) and greyscale (e.g. Y8, Y16) images, color models perform on-board processing of the Bayer tile pattern output produced by the CCD.

Conversion from RGB to YUV uses the following formula:

$$\begin{bmatrix} Y_{601} \\ C_B \\ C_R \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \frac{1}{256} \begin{bmatrix} 65.738 & 129.057 & 25.064 \\ -37.945 & -74.494 & 112.439 \\ 112.439 & -94.154 & -18.285 \end{bmatrix} \begin{bmatrix} R_{255} \\ G_{255} \\ B_{255} \end{bmatrix}$$

To convert the Bayer tile pattern to greyscale, the camera adds the value for each of the RGB components in the color processed pixel to produce a single greyscale (Y) value for that pixel, as follows:

$$Y = R/4 + G/2 + B/4$$

6.10.1 Accessing Raw Bayer Data

The actual physical arrangement of the red, green and blue "pixels" for a given camera is determined by the arrangement of the color filter array on the imaging sensor itself. The format, or order, in which this raw color data is streamed out, however, depends on the specific camera model and firmware version. This format can be queried using the BAYER_TILE_MAPPING register 0x1040 ([page 103](#)).

Using the FlyCapture 2.0 SDK, raw image data can be accessed programmatically via the `getData` method of the `Image` class. In Raw8 modes, the first byte represents the pixel at [row 0, column 0],

the second byte at [row 0, column 1], and so on. Read the BAYER_TILE_MAPPING register 0x1040 to determine the current Bayer output format (RGGB, GRBG, and so on). Using a Bayer format of RGGB, for example, the `getData` method returns the following (assuming `char* data = rawImage.GetData();` and an `Image` object `rawImage`):

- `data[0]` = Row 0, Column 0 = red pixel (R)
- `data[1]` = Row 0, Column 1 = green pixel (G)
- `data[640]` = Row 1, Column 0 = green pixel (G)
- `data[641]` = Row 1, Column 1 = blue pixel (B)

Related Knowledge Base Articles

ID	Title	URL
33	Different color processing algorithms.	www.ptgrey.com/support/kb/index.asp?a=4&q=33
37	Writing color processing software and color interpolation algorithms.	www.ptgrey.com/support/kb/index.asp?a=4&q=37

BAYER_TILE_MAPPING: 1040h

This 32-bit read only register specifies the sense of the cameras' Bayer tiling. Various colors are indicated by the ASCII representation of the first letter of their name.

Color	ASCII
Red (R)	52h
Green (G)	47h
Blue (B)	42h
Monochrome (Y)	59h

For example, 0x52474742 is RGGB and 0x59595959 is YYYY.

Because color models support on-board color processing, the camera reports YYYY tiling when operating in any non-raw Bayer data format. For more information, see [Bayer Color Processing](#) on previous page.

Format

Field	Bit	Description
Bayer_Sense_A	[0-7]	ASCII representation of the first letter of the color of pixel (0,0) in the Bayer tile.
Bayer_Sense_B	[8-15]	ASCII representation of the first letter of the color of pixel (0,1) in the Bayer tile.
Bayer_Sense_C	[16-24]	ASCII representation of the first letter of the color of pixel (1,0) in the Bayer tile.
Bayer_Sense_D	[25-31]	ASCII representation of the first letter of the color of pixel (1,1) in the Bayer tile.

6.11 Image Flip / Mirror

The camera supports horizontal image mirroring. The mirror image operation is performed on the camera using the on-board frame buffer ([page 76](#)).

MIRROR_IMAGE_CTRL: 1054h

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature. 0: N/A, 1: Available
	[1-30]	Reserved.
Mirror_Image_Ctrl	[31]	Value 0: Disable horizontal (mirror) image flip 1: Enable horizontal (mirror) image flip

6.12 Embedded Image Information

The camera provides a feature that allows image timestamps, region of interest (ROI) and other camera settings information to be embedded in the first several pixels of each image.

FRAME_INFO: 12F8h

This register controls the frame-specific information that is embedded into the first several pixels of the image. The first byte of embedded image data starts at pixel 0,0 (column 0, row 0) and continues in the first row of the image data: (1,0), (2,0), and so forth. Users using color cameras that perform Bayer color processing on the PC must extract the value from the non-color processed image in order for the data to be valid.

Embedded image values are those in effect at the end of shutter integration.

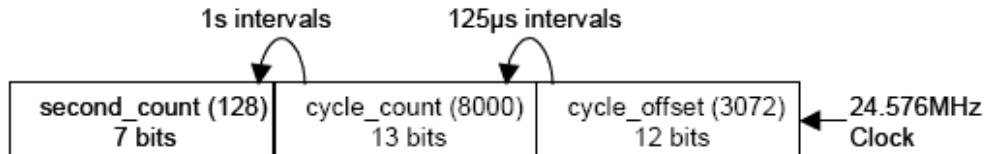
Each piece of information takes up 1 quadlet (4 bytes) of the image. When the camera is operating in Y8 (8bits/pixel) mode, this is therefore 4 pixels worth of data.

Insertion of each quadlet is controlled by a bit in this register. Because it is a bit field, quadlets appear in reverse order from the bits that control them. So, setting bit 31 to '1' enables Timestamp embedding, bit 30 enables Gain, etc. For black and white cameras, white balance is still included, but no valid data is provided.

For example, a write of 800003FFh to this register would turn on all possible options. Therefore, the first 10 quadlets (40 bytes) of image data would contain camera information in the following format, when accessed using the FlyCapture 2.0 API (assuming `unsigned char* data = rawImage.GetData();` and an `Image` object `rawImage`):

- data[0] = first byte of Timestamp data
- data[4] = first byte of Gain data
- data[24] = first byte of Frame Counter data

If only Shutter embedding were enabled (0x12F8 = 0x80000004), then the first 4 bytes of the image would contain Shutter information for that image. Similarly, if only Brightness embedding were enabled, the first 4 bytes would contain Brightness information.


Format:

Field	Bit	Description	Frame-Specific Information
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available	
	[1-5]	Reserved	
ROI_Pos_Inq	[6]	Presence of image-specific information display 0: N/A 1: Available	
GPIO_State_Inq	[7]		
Strobe_Pat_Inq	[8]		
Frame_Count_Inq	[9]		
WB_CSR_Inq	[10]		
Exp_CSR_Inq	[11]		
Bright_CSR_Inq	[12]		
Shutter_CSR_Inq	[13]		
Gain_CSR_Inq	[14]		
Time_Inq	[15]		
CSR_Abs_Value	[16]	Toggles between displaying 32-bit relative or absolute CSR values. If absolute value not supported, relative value is displayed. 0: Relative 1: Absolute This field is currently read-only	
	[17-21]	Reserved	

Field	Bit	Description	Frame-Specific Information
Insert_Info	22	Display image-specific information 0: Off 1: On	Region of Interest (ROI) position (See “Interpreting ROI Information” below)
	23		GPIO Pin State
	24		Strobe Pattern Counter
	25		Frame Counter
	26		White Balance CSR
	27		Exposure CSR
	28		Brightness CSR
	29		Shutter Value
	30		Gain CSR
	31		Timestamp (See “Interpreting Timestamp information” below)

Interpreting Timestamp information

The Timestamp format matches the CYCLE_TIME 0xFF100200 register format as follows (some cameras replace the bottom 4 bits of the cycle_offset with a 4-bit version of the Frame Counter):

cycle_offset increments from 0 to 3071, which equals one cycle_count. cycle_count increments from 0 to 7999, which equals one second. second_count increments from 0 to 127. All counters reset to 0 at the end of each cycle.

Interpreting ROI information

The first two bytes of the quadlet are the distance from the left frame border that the region of interest (ROI) is shifted. The next two bytes are the distance from the top frame border that the ROI is shifted.

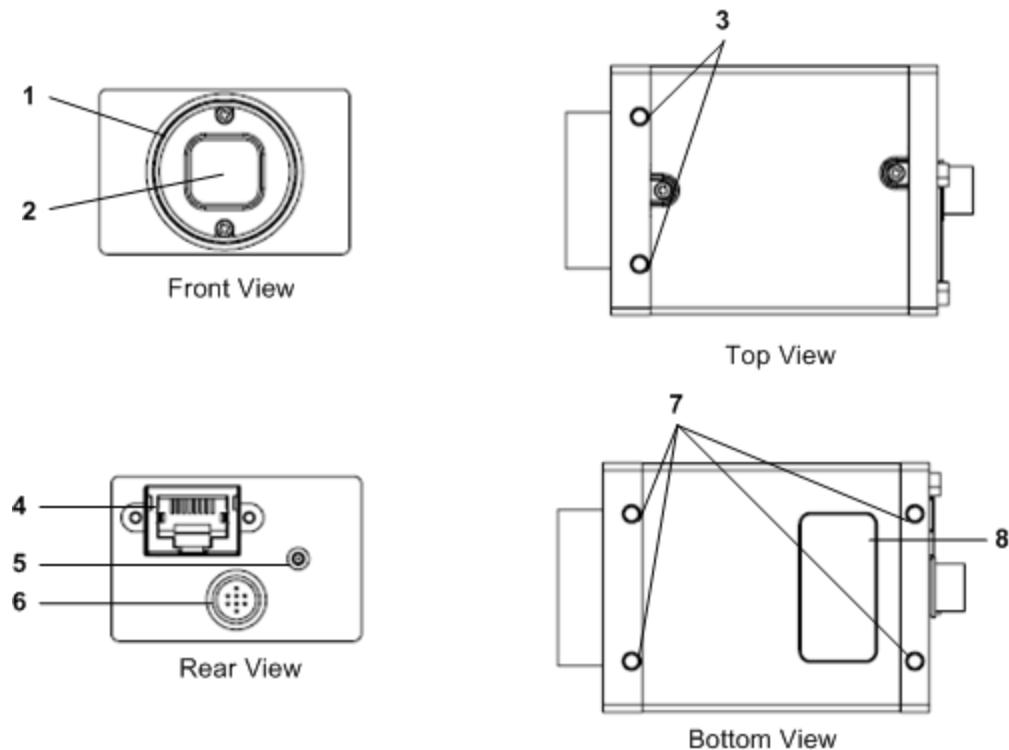
6.13 Pixel Defect Correction

Point Grey tests for white blemish pixels on each camera that is produced. The mechanism to correct blemish pixels is hard-coded into the camera firmware, and can be turned off and on by the user. Pixel correction is on by default. The correction algorithm involves applying the average color

or grayscale values of neighboring pixels to the blemish pixel. The maximum number of pixels corrected is 60.

Related Knowledge Base Articles

ID	Title	URL
314	How Point Grey tests for white blemish pixels	www.ptgrey.com/support/kb/index.asp?a=4&q=314

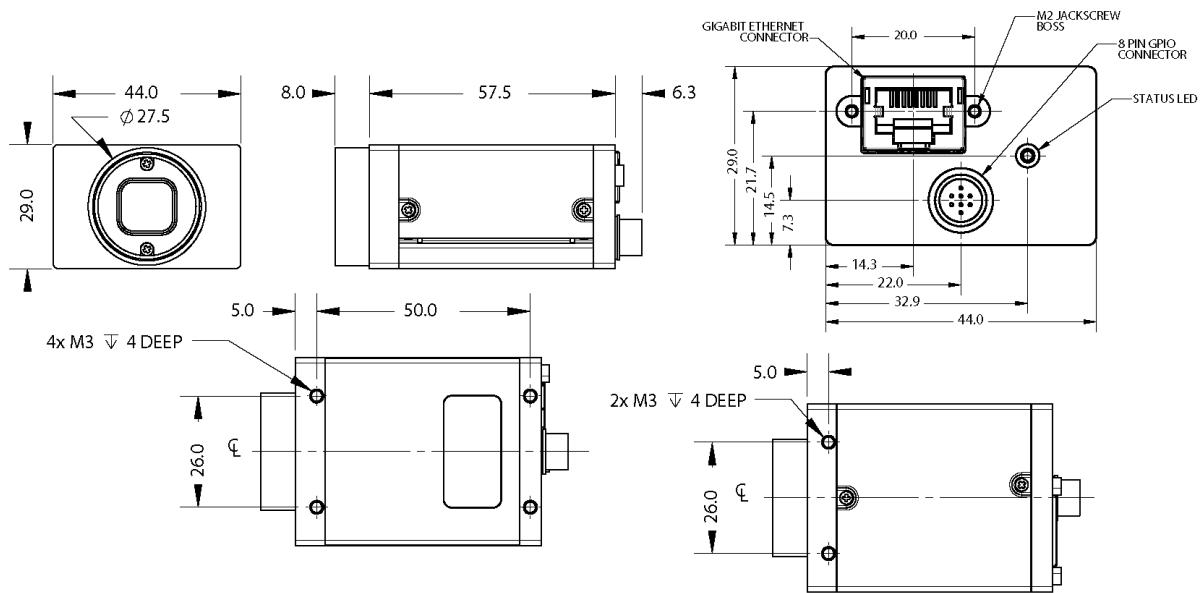

PIXEL_DEFECT_CTRL: 1A60h

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-5]	Reserved
ON_OFF	[6]	Enable or disable pixel correction 0: Off 1: On
Reserved	[7]	Reserved
Max_Pixels	[8-19]	Maximum number of pixels that can be corrected
Cur_Pixels	[20-31]	Current number of pixels that are being corrected

7 Camera Mechanical Properties

7.1 Physical Description



1. Lens holder (C-mount) ([page 110](#))
2. Glass/IR filter system (See [Dust Protection on page 111](#) and [Infrared Cut-Off Filters on page 112](#))
3. M3 x 0.5 mounting holes ([page 112](#))
4. RJ-45 Gigabit Ethernet connector (See [GigE Connector on page 38](#) and [GigE Connector Indicator LEDs on page 30](#))
5. Status LED ([page 29](#))
6. GPIO ([page 38](#))
7. M3 x 0.5 mounting holes ([page 112](#))
8. Camera label

7.2 Camera Dimensions

Dimensional drawings are available for download at
<http://www.ptgrey.com/support/downloads/index.asp>.

Figure 7.1: Camera Dimensional Diagram

7.3 Tripod Adapter Dimensions

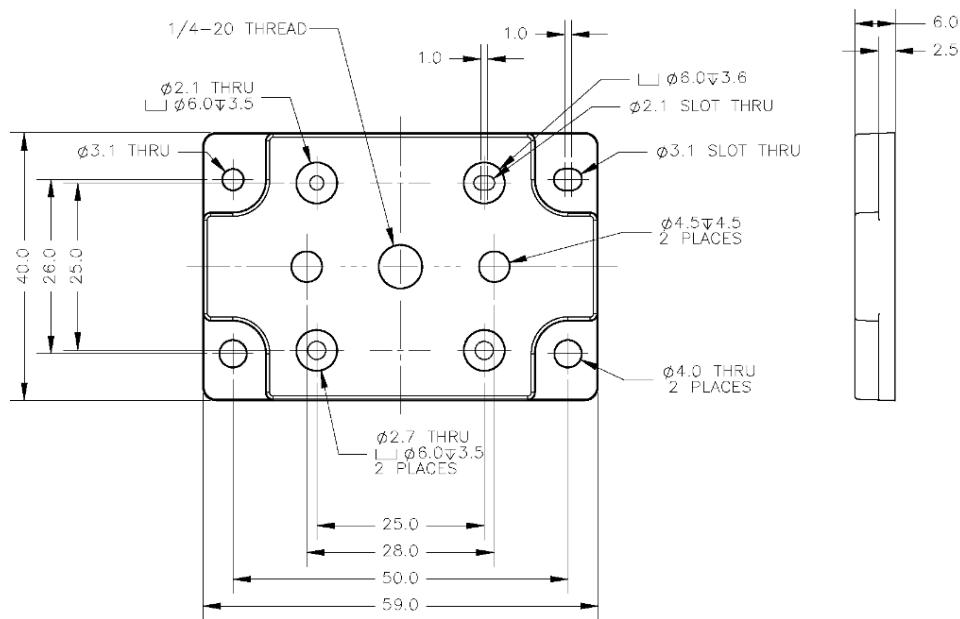
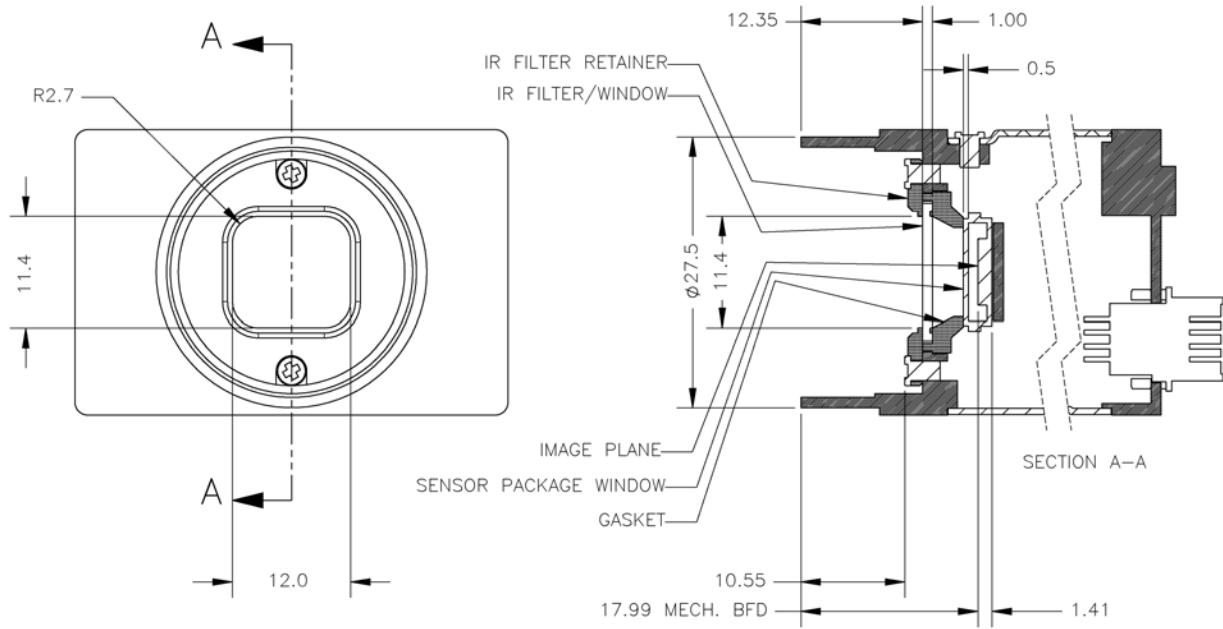



Figure 7.2: Tripod Adapter Dimensional Diagram

7.4 Lens Mount Dimensions

The lens holder is compatible with C-mount lenses. Lenses are not included with individual cameras.

Although the C-mount lens specification for back flange distance (BFD) is 17.52 mm, these distances are offset due to the presence of both a 1 mm infrared cutoff (IRC) filter and a 0.5 mm sensor package window. These two pieces of glass fit between the lens and the sensor image plane. The IRC filter is installed on color cameras. In monochrome cameras, it is a transparent piece of glass. The sensor package window is installed by the sensor manufacturer. Both components cause refraction, which requires some offset in flange back distance to correct. The resulting BFD is 17.99 mm.

Correct focus cannot be achieved when using a CS-mount lens on a C-mount camera.

7.5 Dust Protection

The camera housing is designed to prevent dust from falling directly onto the sensor's protective glass surface. This is achieved by placing a piece of clear glass (monochrome camera models) or IR cut-off filter (color models) that sits above the surface of the sensor's glass. A removable plastic retainer keeps this glass/filter system in place. By increasing the distance between the imaging surface and the location of the potential dust particles, the likelihood of interference from the dust (assuming non-collimated light) and the possibility of damage to the sensor during cleaning is reduced.

- *Cameras are sealed when they are shipped. To avoid contamination, seals should not be broken until cameras are ready for assembly at customer's site.*
- *Use caution when removing the protective glass or filter. Damage to any component of the optical path voids the Hardware Warranty described at the beginning of this reference manual.*
- *Removing the protective glass or filter alters the optical path of the camera, and may result in problems obtaining proper focus with your lens.*

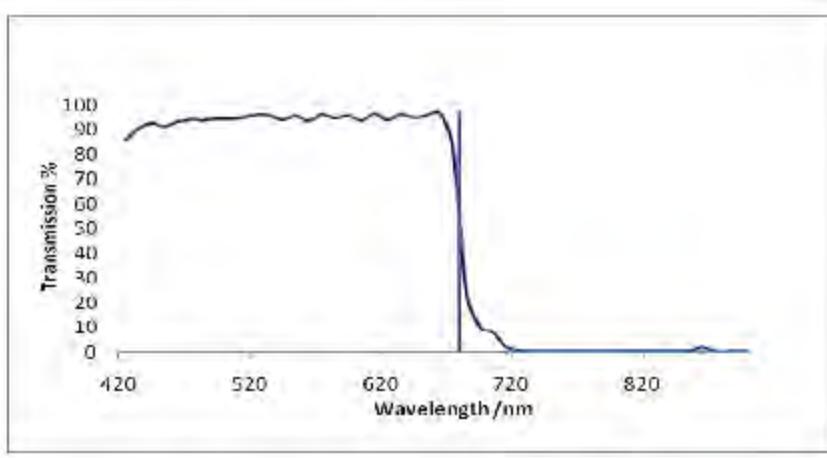
Related Knowledge Base Articles

ID	Title	URL
215	Removing the IR filter from a color camera	http://www.ptgrey.com/support/kb/index.asp?a=4&q=215
345	Selecting a lens for your camera	http://www.ptgrey.com/support/kb/index.asp?a=4&q=345

7.6 Mounting

7.6.1 Using the Case

The case is equipped with the following mounting holes:


- Two (2) M3 x 0.5 mm mounting holes on the top of the case
- Four (4) M3 x 0.5mm mounting holes on the bottom of the case that can be used to attach the camera directly to a custom mount or to the tripod mounting bracket

7.6.2 Using the Tripod Adapter

The tripod mounting bracket is equipped with four (4) M3 mounting holes. For more information, see [Tripod Adapter Dimensions on page 110](#).

7.7 Infrared Cut-Off Filters

Point Grey color camera models are equipped with an additional infrared (IR) cut-off filter. This filter can reduce sensitivity in the near infrared spectrum and help prevent smearing. The properties of this filter are illustrated in the results below.

Figure 7.3: IR filter transmittance graph

In monochrome models, the IR filter is replaced with a transparent piece of glass.

The following are the properties of the IR filter/protective glass:

Type	Reflective
Material	Schott D 263 T or BK7 equivalent for coating filters
Physical Filter Size	14 mm x 14 mm
Glass Thickness	1.0 mm
Dimensional Tolerance	+/-0.1 mm ¹
Coating Filters	Scott D 263 T

For more information, see [Dust Protection on page 111](#).

Related Knowledge Base Articles

ID	Title	URL
215	Removing the IR filter from a color camera	http://www.ptgrey.com/support/kb/index.asp?a=4&q=215

8 Troubleshooting and Support

8.1 Technical Support Resources

Point Grey Research Inc. endeavors to provide the highest level of technical support possible to our customers. Most support resources can be accessed through the Product Support section of our website: www.ptgrey.com/support.

Creating a Customer Login Account

The first step in accessing our technical support resources is to obtain a Customer Login Account. This requires a valid name, e-mail address, and camera serial number. To apply for a Customer Login Account go to www.ptgrey.com/support/downloads/.

Knowledge Base

Our on-line knowledge base at www.ptgrey.com/support/kb/ contains answers to some of the most common support questions. It is constantly updated, expanded, and refined to ensure that our customers have access to the latest information.

Product Downloads

Customers with a Customer Login Account can access the latest software and firmware for their cameras from our downloads site at www.ptgrey.com/support/downloads. We encourage our customers to keep their software and firmware up-to-date by downloading and installing the latest versions.

Contacting Technical Support

Before contacting Technical Support, have you:

1. *Read the product documentation and user manual?*
2. *Searched the Knowledge Base?*
3. *Downloaded and installed the latest version of software and/or firmware?*

If you have done all the above and still can't find an answer to your question, contact our Technical Support team at www.ptgrey.com/support/contact/.

8.2 Status Indicator LEDs

For information about the status indicator LEDs on the camera, see [Main Status Indicator LED on page 29](#)

8.3 Common Image Sensor Artifacts

8.3.1 White Blemish Pixels

Cosmic radiation may cause random pixels to generate a permanently high charge, resulting in a permanently lit, or 'glowing,' appearance. Point Grey tests for and programs white blemish pixel correction into the camera firmware. For more information, see [Blemish Pixel Defect Correction \(page 106\)](#).

8.3.2 Vertical Smear

When a strong light source is shone on the camera, a faint bright line may be seen extending vertically through an image from a light-saturated spot. Vertical smear is a byproduct of the interline transfer system that extracts data from the CCD. Smear may be reduced by operating the camera in Trigger Mode 13 ([page 58](#)).

More information and suggestions for troubleshooting are presented in Knowledge Base Article 88 (<http://www.ptgrey.com/support/kb/index.asp?a=4&q=88>).

8.3.3 Dead Pixels

In very rare cases, one or more pixels in the sensor array may stop responding and appear black (dead).

8.4 Error Status Registers

For information about error status registers, see [Error Status Registers on page 33](#).

Appendix A: General Register Information

Register Memory Map

The camera uses a 64-bit fixed addressing model. The upper 10 bits show the Bus ID, and the next six bits show the Node ID. The next 20 bits must be 1 (FFFF Fh).

Address	Register Name	Description
FFFF F000 0000h	Base address	
FFFF F000 0400h	Config ROM	
FFFF F0F0 0000h	Base address for all camera control command registers	
The following register addresses are offset from the base address, FFFF F0F0 0000h.		
000h	INITIALIZE	Camera initialize register
100h 180h	V_FORMAT_INQ V_MODE_INQ_X	Inquiry register for video format Inquiry register for video mode
200h	V_RATE_INQ_y_X	Inquiry register for video frame rate
300h	Reserved	
400h	BASIC_FUNC_INQ FEATURE_HI_INQ FEATURE_LO_INQ	Inquiry register for feature presence
500h	Feature_Name_INQ	Inquiry register for feature elements
600h 640h	CAM_STA_CTRL	Status and control register for camera Feature control error status register
700h	ABS_CSR_HI_INQ_x	Inquiry register for Absolute value CSR offset address
800h	Feature_Name	Status and control register for feature

The FlyCapture API library has function calls to get and set camera register values. These function calls automatically take into account the base address. For example, to get the 32-bit value of the SHUTTER register at 0xFFFF F0F0 081C:

FlyCapture v1.x:

```
flycaptureGetCameraRegister(context, 0x81C, &ulValue);
```

FlyCapture v2.x (assuming a `camera` object named `cam`):

```
cam.ReadRegister(0x81C, &regVal);
```

Config ROM

Root Directory

	Offset	Bit	Description
Bus Info Block	400h	[0-7]	04h
		[8-15]	crc_length
		[16-31]	rom_crc_value
	404h	[0-7]	31h
		[8-15]	33h
		[16-23]	39h
		[24-31]	34h
	408h	[0-3]	0010 (binary)
		[4-7]	Reserved
		[8-15]	FFh
		[16-19]	max_rec
		[20]	Reserved
		[21-23]	mxrom
		[24-31]	chip_id_hi
	40Ch	[0-23]	node_vendor_id
		[24-31]	chip_id_hi
	410h	[0-31]	chip_id_lo
Root Directory	414h	[0-15]	0004h
		[16-31]	CRC
	418h	[0-7]	03h
		[8-31]	module_vendor_id
	41Ch	[0-7]	0Ch
		[8-15]	Reserved
		[16-31]	1000001111000000 (binary)
	420h	[0-7]	8Dh
		[8-31]	indirect_offset
	424h	[0-7]	D1h
		[8-31]	unit_directory_offset

Unit Directory

	Offset	Bit	Description
Unit Directory	0000h	[0-15]	0003h
		[16-31]	CRC
	0004h	[0-7]	12h
		[8-31]	unit_spec_ID (=0x00A02D)
	0008h	[0-7]	13h
		[8-31]	unit_sw_version (=0x000102)
	000Ch	[0-7]	D4h
		[8-31]	unit dependent directory offset

Unit Dependent Info

	Offset	Bit	Description
Unit Dependent Info	0000h	[0-15]	unit_dep_info_length
		[16-31]	CRC
	0004h	[0-7]	40h
		[8-31]	command_regs_base
	0008h	[0-7]	81h
		[8-31]	vendor_name_leaf
	000Ch	[0-7]	82h
		[8-31]	model_name_leaf
	0010h	[0-7]	38h
		[8-31]	unit_sub_sw_version
	0014h	[0-7]	39h
		[8-31]	Reserved
	0018h	[0-7]	3Ah
		[8-31]	Reserved
	001Ch	[0-7]	3Bh
		[8-31]	Reserved
	0020h	[0-7]	3Ch
		[8-31]	vendor_unique_info_0
	0024h	[0-7]	3Dh
		[8-31]	vendor_unique_info_1
	0028h	[0-7]	3Eh
		[8-31]	vendor_unique_info_2
	002Ch	[0-7]	3Fh
		[8-31]	vendor_unique_info_3

- *command_regs_base* is the quadlet offset from the base address of initial register space of the base address of the command registers.
- *vendor_name_leaf* specifies the number of quadlets from the address of the *vendor_name_leaf* entry to the address of the *vendor_name* leaf containing an ASCII representation of the vendor name of this node.
- *model_name_leaf* specifies the number of quadlets from the address of the *model_name_leaf* entry to the address of the *model_name* leaf containing an ASCII representation of the model name of this node.
- *unit_sub_sw_version* specifies the sub version information of this unit:
 - *unit_sub_sw_version* = 0x000000h or unspecified for IIDC v1.30
 - *unit_sub_sw_version* = 0x000010h for IIDC v1.31
 - *unit_sub_sw_version* = 0x000020h for IIDC v1.32

Calculating Register Addresses using Quadlet Offsets

The addresses for many IIDC control and status registers (CSR's), such as those that provide control over absolute values, Format_7 video modes, PIO, SIO and strobe output, vary between camera manufacturers. In order to provide a common mechanism across camera models for determining the location of these CSR's relative to the 1394 base address, the IIDC specification provides fixed locations for inquiry registers that contain quadlet offsets, or pointers, to the actual offsets.

For example, the Absolute Value CSR's provide minimum, maximum and current real-world values for camera properties such as gain, shutter, etc., as described in *Absolute Value CSR Registers* on page 134. To determine the location of the shutter absolute value registers (code snippets use function calls included in the FlyCapture SDK, and assume a `Camera` object `cam`):

1. Read the `ABS_CSR_HI_INQ_7` register 71Ch to obtain the quadlet offset for the absolute value CSR for shutter.

```
unsigned int ulValue;
cam.ReadRegister(0x71C, &ulValue);
```

2. The 32-bit `ulValue` is a quadlet offset, so multiply by 4 to get the actual offset.

```
ulValue = ulValue * 4; // ulValue == 0x3C0244, actual offset == 0xF00910
```

3. The actual offset 0xF00910 represents the offset from the base address 0xFFFF Fxxx xxxx. Since the PGR FlyCapture API automatically takes into account the base offset 0xFFFF F0F0 0000, the actual offset in this example would be 0x910.

```
ulValue = ulValue & 0xFFFF;
```

Appendix B: Inquiry Registers

Inquiry Registers for Video Format / Mode / Frame Rate

The following registers may be used to determine the video formats, modes and frame rates that are available with the camera.

(Bit values = 0: Not Available, 1: Available)

Video Mode Inquiry Registers

Format:

Offset	Name	Field	Bit	Description
19Ch	V_MODE_INQ_7	Mode_0	[0]	Mode_0
		Mode_1	[1]	Mode_1
		Mode_2	[2]	Mode_2
		Mode_3	[3]	Mode_3
		Mode_4	[4]	Mode_4
		Mode_5	[5]	Mode_5
		Mode_6	[6]	Mode_6
		Mode_7	[7]	Mode_7
			[8-31]	Reserved

Video Frame Rate Inquiry Registers

This set of registers allows the user to query the available frame rates for all modes.

Format:

Offset	Name	Field	Bit	Description
2E0h	V_CSR_INQ_7_0	Mode_0	[0-31]	CSR quadlet offset for Mode_0
2E4h	V_CSR_INQ_7_1	Mode_1	[0-31]	CSR quadlet offset for Mode_1
2E8h	V_CSR_INQ_7_2	Mode_2	[0-31]	CSR quadlet offset for Mode_2
2ECh	V_CSR_INQ_7_3	Mode_3	[0-31]	CSR quadlet offset for Mode_3
2F0h	V_CSR_INQ_7_4	Mode_4	[0-31]	CSR quadlet offset for Mode_4
2F4h	V_CSR_INQ_7_5	Mode_5	[0-31]	CSR quadlet offset for Mode_5

Offset	Name	Field	Bit	Description
2F8h	V_CSR_INQ_7_6	Mode_6	[0-31]	CSR quadlet offset for Mode_6
2FCh	V_CSR_INQ_7_7	Mode_7	[0-31]	CSR quadlet offset for Mode_7
300h	V_CSR_INQ_7_8	Mode_8	[0-31]	CSR quadlet offset for Mode_8
304h	V_CSR_INQ_7_9	Mode_9	[0-31]	CSR quadlet offset for Mode_9
308h	V_CSR_INQ_7_10	Mode_10	[0-31]	CSR quadlet offset for Mode_10
30Ch	V_CSR_INQ_7_11	Mode_11	[0-31]	CSR quadlet offset for Mode_11
310h	V_CSR_INQ_7_12	Mode_12	[0-31]	CSR quadlet offset for Mode_12
314h	V_CSR_INQ_7_13	Mode_13	[0-31]	CSR quadlet offset for Mode_13
318h	V_CSR_INQ_7_14	Mode_14	[0-31]	CSR quadlet offset for Mode_14
31Ch	V_CSR_INQ_7_15	Mode_15	[0-31]	CSR quadlet offset for Mode_15
320h	V_CSR_INQ_7_16	Mode_16	[0-31]	CSR quadlet offset for Mode_16
324h	V_CSR_INQ_7_17	Mode_17	[0-31]	CSR quadlet offset for Mode_17
328h	V_CSR_INQ_7_18	Mode_18	[0-31]	CSR quadlet offset for Mode_18
32Ch	V_CSR_INQ_7_19	Mode_19	[0-31]	CSR quadlet offset for Mode_19
330h	V_CSR_INQ_7_20	Mode_20	[0-31]	CSR quadlet offset for Mode_20
334h	V_CSR_INQ_7_21	Mode_21	[0-31]	CSR quadlet offset for Mode_21
338h	V_CSR_INQ_7_22	Mode_22	[0-31]	CSR quadlet offset for Mode_22
33Ch	V_CSR_INQ_7_23	Mode_23	[0-31]	CSR quadlet offset for Mode_23
340h	V_CSR_INQ_7_24	Mode_24	[0-31]	CSR quadlet offset for Mode_24
344h	V_CSR_INQ_7_25	Mode_25	[0-31]	CSR quadlet offset for Mode_25

Offset	Name	Field	Bit	Description
348h	V_CSR_INQ_7_26	Mode_26	[0-31]	CSR quadlet offset for Mode_26
34Ch	V_CSR_INQ_7_27	Mode_27	[0-31]	CSR quadlet offset for Mode_27
350h	V_CSR_INQ_7_28	Mode_28	[0-31]	CSR quadlet offset for Mode_28
354h	V_CSR_INQ_7_29	Mode_29	[0-31]	CSR quadlet offset for Mode_29
358h	V_CSR_INQ_7_30	Mode_30	[0-31]	CSR quadlet offset for Mode_30
35Ch	V_CSR_INQ_7_31	Mode_31	[0-31]	CSR quadlet offset for Mode_31

Inquiry Registers for Basic Functions

The following registers show which basic functions are implemented on the camera.

(Bit values = 0: Not Available, 1: Available)

Format:

Offset	Name	Field	Bit	Description
400h	BASIC_FUNC_INQ	Advanced_Feature_Inq	[0]	Inquiry for advanced feature. (Vendor Unique Features)
		Vmode_Error_Status_Inq	[1]	Inquiry for existence of Vmode_Error_Status register
		Feature_Control_Error_Status_Inq	[2]	Inquiry for existence of Feature_Control_Error_Status register
		Opt_Func_CSR_Inq	[3]	Inquiry for optional function CSR.
			[4-7]	Reserved
		1394.b_mode_Capability	[8]	Inquiry for 1394.b mode capability
			[9-15]	Reserved
		Cam_Power_Cntl	[16]	Camera process power ON/OFF capability
			[17-18]	Reserved
		One_Shot_Inq	[19]	One shot transmission capability
		Multi_Shot_Inq	[20]	Multi shot transmission capability
		Retransmit_Inq	[21]	Retransmit latest image capability (One_shot/Retransmit)
		Image_Buffer_Inq	[22]	Image buffer capability (Multi_shot/Image_Buffer)
			[23-27]	Reserved
		Memory_Channel	[28-31]	Maximum memory channel number (N) Memory channel no 0 = Factory setting memory 1 = Memory Ch 1 2 = Memory Ch 2 : N= Memory Ch N If 0000, user memory is not available.

Inquiry Registers for Feature Presence

The following registers show the presence of the camera features or optional functions implemented on the camera.

(Bit values = 0: Not Available, 1: Available)

Format:

Offset	Name	Field	Bit	Description
404h	Feature_Hi_Inq	Brightness	[0]	Brightness Control
		Auto_Exposure	[1]	Auto Exposure Control
		Sharpness	[2]	Sharpness Control
		White_Balance	[3]	White Balance Control
		Hue	[4]	Hue Control
		Saturation	[5]	Saturation Control
		Gamma	[6]	Gamma Control
		Shutter	[7]	Shutter Speed Control
		Gain	[8]	Gain Control
		Iris	[9]	IRIS Control
		Focus	[10]	Focus Control
		Temperature	[11]	Temperature Control
		Trigger	[12]	Trigger Control
		Trigger_Delay	[13]	Trigger Delay Control
		White_Shading	[14]	White Shading Compensation Control
		Frame_Rate	[15]	Frame rate prioritize control
			[16-31]	Reserved
408h	Feature_Lo_Inq	Zoom	[0]	Zoom Control
		Pan	[1]	Pan Control
		Tilt	[2]	Tilt Control
		Optical Filter	[3]	Optical Filter Control
			[4-15]	Reserved
		Capture_Size	[16]	Capture image size for Format_6
		Capture_Quality	[17]	Capture image quality for Format_6
			[18-31]	Reserved
40Ch	Opt_Function_Inq	-	[0]	Reserved

Offset	Name	Field	Bit	Description
		PIO	[1]	Parallel input/output control
		SIO	[2]	Serial Input/output control
		Strobe_Output	[3]	Strobe signal output
		Lookup_Table	[4]	Lookup table control
		-	[5-31]	Reserved
410h-47Fh	Reserved			
480h	Advanced_Feature_Inq	Advanced_Feature_Qquadlet_Offset	[0-31]	Quadlet offset of the advanced feature CSR's (see the Advanced Registers section) from the base address of initial register space. (Vendor unique)
484h	PIO_Control_CSR_Inq	PIO_Control_Qquadlet_Offset	[0-31]	Quadlet offset of the PIO control CSR's (see the Parallel Input/Output (PIO) section) from the base address of initial register space.
488h	SIO_Control_CSR_Inq	SIO_Control_Qquadlet_Offset	[0-31]	Quadlet offset of the SIO control CSR's (see the Serial Port Input/Output (SIO) section) from the base address of initial register space.
48Ch	Strobe_Output_CSR_Inq	Strobe_Output_Qquadlet_Offset	[0-31]	Quadlet offset of the strobe output signal CSR's (see the Strobe Signal Output section) from the base address of initial register space.
490h	Lookup_Table_CSR_Inq	Lookup_Table_Qquadlet_Offset	[0-31]	Quadlet offset of the Lookup Table CSRs from the base address of initial register space.

Inquiry Registers for Feature Elements

The following registers show the presence of specific features, modes and minimum and maximum values for each of the camera features or optional functions implemented by the camera.

(Bit values = 0: Not Available, 1: Available)

Format:

Offset	Name	Field	Bit	Description
500h	BRIGHTNESS_INQ	Presence_Inq	[0]	Presence of this feature
		Abs_Control_Inq	[1]	Absolute value control
			[2]	Reserved
		One_Push_Inq	[3]	One push auto mode (controlled automatically by camera only once)
		ReadOut_	[4]	Ability to read the value of this feature

Offset	Name	Field	Bit	Description
		Inq		
		On_Off_Inq	[5]	Ability to switch feature ON and OFF
		Auto_Inq	[6]	Auto mode (controlled automatically by camera)
		Manual_Inq	[7]	Manual mode (controlled by user)
		Min_Value	[8-19]	Minimum value for this feature control
		Max_Value	[20-31]	Maximum value for this feature control
504h	AUTO_EXPOSURE_INQ			Same format as the BRIGHTNESS_INQ register
508h	SHARPNESS_INQ			Same format as the BRIGHTNESS_INQ register
50Ch	WHITE_BALANCE_INQ			Same format as the BRIGHTNESS_INQ register
510h	HUE_INQ			Same format as the BRIGHTNESS_INQ register
514h	SATURATION_INQ			Same format as the BRIGHTNESS_INQ register
518h	GAMMA_INQ			Same format as the BRIGHTNESS_INQ register
51Ch	SHUTTER_INQ			Same format as the BRIGHTNESS_INQ register
520h	GAIN_INQ			Same format as the BRIGHTNESS_INQ register
524h	IRIS_INQ			Same format as the BRIGHTNESS_INQ register
528h	FOCUS_INQ			Same format as the BRIGHTNESS_INQ register
52Ch	TEMPERATURE_INQ			Same format as the BRIGHTNESS_INQ register
530h	TRIGGER_INQ	Presence_Inq	[0]	Presence of this feature
		Abs_Control_Inq	[1]	Absolute value control
			[2-3]	Reserved
		ReadOut_Inq	[4]	Ability to read the value of this feature
		On_Off_Inq	[5]	Ability to switch feature ON and OFF
		Polarity_Inq	[6]	Ability to change trigger input polarity
		Value_Read_Inq	[7]	Ability to read raw trigger input
		Trigger_Source0_Inq	[8]	Presence of Trigger Source 0 ID=0
		Trigger_Source1_Inq	[9]	Presence of Trigger Source 1 ID=1
		Trigger_	[10]	Presence of Trigger Source 2

Offset	Name	Field	Bit	Description
		Source2_Inq		ID=2
		Trigger_Source3_Inq	[11]	Presence of Trigger Source 3 ID=3
			[12-14]	Reserved ID=4-6
		Software_Trigger_Inq	[15]	Presence of Software Trigger ID=7
		Trigger_Mode0_Inq	[16]	Presence of Trigger Mode 0
		Trigger_Mode1_Inq	[17]	Presence of Trigger Mode 1
		Trigger_Mode2_Inq	[18]	Presence of Trigger Mode 2
		Trigger_Mode3_Inq	[19]	Presence of Trigger Mode 3
		Trigger_Mode4_Inq	[20]	Presence of Trigger Mode 4
		Trigger_Mode5_Inq	[21]	Presence of Trigger Mode 5
			[22-29]	Reserved
		Trigger_Mode14_Inq	[30]	Presence of Trigger Mode 14 (Vendor unique trigger mode 0)
		Trigger_Mode15_Inq	[31]	Presence of Trigger Mode 15 (Vendor unique trigger mode 1)
534h	TRIGGER_DLY_INQ	Presence_Inq	[0]	Presence of this feature
		Abs_Control_Inq	[1]	Absolute value control
			[2]	Reserved
		One_Push_Inq	[3]	One push auto mode (controlled automatically by camera only once)
		ReadOut_Inq	[4]	Ability to read the value of this feature
		On_Off_Inq	[5]	Ability to switch feature ON and OFF
			[6-7]	Reserved
		Min_Value	[8-19]	Minimum value for this feature control
		Max_Value	[20-31]	Maximum value for this feature control

Offset	Name	Field	Bit	Description
538h	WHITE_SHD_INQ			Same format as the BRIGHTNESS_INQ register
53Ch	FRAME_RATE_INQ			Same format as the BRIGHTNESS_INQ register
540h : 57Ch	Reserved for other FEATURE_HI_INQ			
580h	ZOOM_INQ	Presence_Inq	[0]	Presence of this feature
		Abs_Control_Inq	[1]	Absolute value control
			[2]	Reserved
		One_Push_Inq	[3]	One push auto mode (controlled automatically by camera only once)
		ReadOut_Inq	[4]	Ability to read the value of this feature
		On_Off_Inq	[5]	Ability to switch feature ON and OFF
		Auto_Inq	[6]	Auto mode (controlled automatically by camera)
		Manual_Inq	[7]	Manual mode (controlled by user)
		Min_Value	[8-19]	Minimum value for this feature control
		Max_Value	[20-31]	Maximum value for this feature control
584h	PAN_INQ			Same format as the ZOOM_INQ register
588h	TILT_INQ			Same format as the ZOOM_INQ register
58Ch	OPTICAL_FILTER_INQ			Same format as the ZOOM_INQ register

Appendix C: Video Mode Control and Status Registers

Inquiry Registers for CSR Offset Addresses

The following set of registers indicates the locations of the Mode_x CSR registers. These offsets are relative to the base offset 0xFFFF F0F0 0000.

Offset	Name	Field	Bit	Description
2E0h	V_CSR_INQ_7_0	Mode_0	[0-31]	CSR quadlet offset for Mode_0
2E4h	V_CSR_INQ_7_1	Mode_1	[0-31]	CSR quadlet offset for Mode_1
2E8h	V_CSR_INQ_7_2	Mode_2	[0-31]	CSR quadlet offset for Mode_2
2ECh	V_CSR_INQ_7_3	Mode_3	[0-31]	CSR quadlet offset for Mode_3
2F0h	V_CSR_INQ_7_4	Mode_4	[0-31]	CSR quadlet offset for Mode_4
2F4h	V_CSR_INQ_7_5	Mode_5	[0-31]	CSR quadlet offset for Mode_5
2F8h	V_CSR_INQ_7_6	Mode_6	[0-31]	CSR quadlet offset for Mode_6
2FCh	V_CSR_INQ_7_7	Mode_7	[0-31]	CSR quadlet offset for Mode_7
300h	V_CSR_INQ_7_8	Mode_8	[0-31]	CSR quadlet offset for Mode_8

Table C.1: Inquiry Register Offset Addresses

Current Register Offsets

The actual offsets that are derived using the quadlet offset information in *Inquiry Registers for Format_7 CSR Offset Addresses* (page 129) are as follows:

The following table of offsets is current as of the revision date. These offsets are subject to change without notice.

Offset Range	Description
2000h - 207Ch	Mode_0 register offsets
2080h - 20FCh	Mode_1 register offsets
2100h - 217Ch	Mode_2 register offsets
2180h - 21FCh	Mode_3 register offsets
2200h - 227Ch	Mode_4 register offsets
2280h - 22FCh	Mode_5 register offsets
2300h - 237Ch	Mode_6 register offsets
2380h - 23FCh	Mode_7 register offsets
2400h - 247Ch	Mode_8 register offsets

FORMAT 7 RESIZE_INQ: 1AC8h

This register reports all internal camera processes being used to generate images in the current mode. For example, users can read this register to determine if pixel binning and/or subsampling is being used to achieve a non-standard custom image size.

This register is read-only.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-7]	Reserved
Num_Cols	[8-11]	Number of columns being binned / subsampled, minus one e.g. if combining four columns together, this register will report a value of three.
Num_Rows	[12-15]	Number of rows binned / subsampled, minus one e.g. if combining four columns together, this register will report a value of three.
	[16-23]	Reserved
V_Pre_Color	[24]	Vertical subsampling / downsampling performed before color processing 0: Off, 1: On
H_Pre_Color	[25]	Horizontal subsampling / downsampling performed before color processing 0: Off, 1: On
V_Post_Color	[26]	Vertical subsampling / downsampling performed after color processing 0: Off, 1: On
H_Post_Color	[27]	Horizontal subsampling / downsampling performed after color processing 0: Off, 1: On
V_Bin	[28]	Standard vertical binning (addition of adjacent lines within horizontal shift register) 0: Off, 1: On
H_Bin	[29]	Standard horizontal binning (addition of adjacent lines within horizontal shift register) 0: Off, 1: On
V_Bayer_Bin	[30]	Vertical bayer binning (addition of adjacent even / odd lines within the interline transfer buffer) 0: Off, 1: On
H_Bayer_Bin	[31]	Horizontal bayer binning (addition of adjacent even / odd columns within the horizontal shift register) 0: Off, 1: On

MAX_IMAGE_SIZE_INQ: 000h

This register is an inquiry register for maximum image size.

Format:

Field	Bit	Description
Hmax	[0-15]	Maximum horizontal pixel number
Vmax	[16-31]	Maximum vertical pixel number

UNIT_SIZE_INQ (004h) and UNIT_POSITION_INQ (04Ch)

This register is an inquiry register for unit size.

$$Hmax = Hunit * n = Hposunit * n3 \quad (n, n3 \text{ are integers})$$

$$Vmax = Vunit * m = Vposunit * m3 \quad (m, m3 \text{ are integers})$$

If the read value of Hposunit is 0, Hposunit = Hunit for compatibility with IIDC Rev 1.20.

If the read value of Vposunit is 0, Vposunit = Vunit for compatibility with IIDC Rev 1.20.

Format (UNIT_SIZE_INQ: 004h):

Field	Bit	Description
Hunit	[0-15]	Horizontal unit pixel number
Vunit	[16-31]	Vertical unit pixel number

Format (UNIT_POSITION_INQ: 04Ch):

Field	Bit	Description
Hposunit	[0-15]	Horizontal unit pixel number for position If read value of Hposunit is 0, Hposunit = Hunit for compatibility.
Vposunit	[16-31]	Vertical unit number for position If read value of Vposunit is 0, Vposunit = Vunit for compatibility.

IMAGE_POSITION (008h) and IMAGE_SIZE (00Ch)

These registers determine an area of required data. All the data must be as follows:

$$Left = Hposunit * n1$$

$$Top = Vposunit * m1$$

$$Width = Hunit * n2$$

$$Height = Vunit * m2 \quad (n1, n2, m1, m2 \text{ are integers})$$

$$Left + Width \leq Hmax$$

$$Top + Height \leq Vmax$$

Format (IMAGE_POSITION: 008h):

Field	Bit	Description
Left	[0-15]	Left position of requested image region (pixels)
Top	[16-31]	Top position of requested image region (pixels)

Format (IMAGE_SIZE: 00Ch):

Field	Bit	Description
Width	[0-15]	Width of requested image region (pixels)
Height	[16-31]	Height of requested image region (pixels)

COLOR_CODING_ID (010h) and COLOR_CODING_INQ (014h)

The COLOR_CODING_INQ register describes available the color-coding capability of the system. Each coding scheme has its own ID number. The required color-coding scheme must be set to COLOR_CODING_ID register as the ID number.

Format (COLOR_CODING_ID: 010h):

Field	Bit	Description
Coding_ID	[0-7]	Color coding ID from COLOR_CODING_INQ register
	[8-31]	Reserved (all zero)

Format (COLOR_CODING_INQ: 014h):

Field	Bit	Description	ID
Mono8	[0]	Y only. Y=8bits, non compressed	0
4:1:1 YUV8	[1]	4:1:1, Y=U=V= 8bits, non compressed	1
4:2:2 YUV8	[2]	4:2:2, Y=U=V=8bits, non compressed	2
4:4:4 YUV8	[3]	4:4:4, Y=U=V=8bits, non compressed	3
RGB8	[4]	R=G=B=8bits, non compressed	4
Mono16	[5]	Y only, Y=16bits, non compressed	5
RGB16	[6]	R=G=B=16bits, non compressed	6
Signed Mono16	[7]	Y only, Y=16 bits, non compressed (signed integer)	7
Signed RGB16	[8]	R=G=B=16 bits, non compressed (signed integer)	8
Raw8	[9]	Raw data output of color filter sensor, 8 bits	9
Raw16	[10]	Raw data output of color filter sensor, 16 bits	10
Mono12	[11]	Y only. Y=12 bits, non compressed	
Raw12	[12]	Raw data output of color filter sensor, 12 bits	
	[13-31]	Reserved (all zero)	11-31

Format (COLOR_CODING_INQ: 030h):

Field	Bit	Description	ID
	[0-30]	Reserved	
JPEG+YUV422	[31]	4:2:2, Y=U=V=8bits, JPEG-compressed	255

PIXEL_NUMBER_INQ (034h), TOTAL_BYTES_HI_INQ (038h), and TOTAL_BYTES_LO_INQ (03Ch)

The *PIXEL_NUMBER_INQ* register includes the total number of pixels in the required image area. The *TOTAL_BYTE_INQ* register includes the total number of bytes in the required image area.

If the *Presence* bit in the *VALUE_SETTING* register (page 1) is zero, the values of these registers will be updated by writing the new value to the *IMAGE_POSITION* (page 131), *IMAGE_SIZE* (page 131) and *COLOR_CODING_ID* (page 132) registers.

If the *Presence* bit in the *VALUE_SETTING* register is one, the values of these registers will be updated by writing one to the *Setting_1* bit in the *VALUE_SETTING* register. If the *ErrorFlag_1* bit is zero after the *Setting_1* bit returns to zero, the values of these registers are valid.

Format (PIXEL_NUMBER_INQ: 034h):

Field	Bit	Description
PixelPerFrame	[0-31]	Pixel number per frame

Format (TOTAL_BYTES_HI_INQ: 038h):

Field	Bit	Description
BytesPerFrameHi	[0-31]	Higher quadlet of total bytes of image data per frame

Format (TOTAL_BYTES_LO_INQ: 03Ch):

Field	Bit	Description
BytesPerFrameLo	[0-31]	Lower quadlet of total bytes of image data per frame

FRAME_INTERVAL_INQ: 050h

This register describes the frame interval based on the current camera conditions, including exposure time. The reciprocal value of this (1 / FrameInterval) is the frame rate of the camera. If the value of this register is zero, the camera can't report this value and it should be ignored. FrameInterval is in seconds and reported in IEEE1394/REAL*4 floating-point format (see *Determining Absolute Value Register Values* (page 137))

Format:

Field	Bit	Description
FrameInterval	[0-31]	Current frame interval (seconds) (IEEE/REAL*4 floating-point value) If read value of FrameInterval is zero, ignore this field.

Appendix D: Absolute Value Registers

Inquiry Registers for Absolute Value CSR Offset Addresses

The following set of registers indicates the locations of the absolute value CSR registers. These offsets are relative to the base offset 0xFFFF F0F0 0000.

Offset	Name	Bit	Description
700h	ABS_CSR_HI_INQ_0	[0..31]	Quadlet offset for the absolute value CSR for Brightness.
704h	ABS_CSR_HI_INQ_1	[0..31]	Quadlet offset for the absolute value CSR for Auto Exposure.
708h	ABS_CSR_HI_INQ_2	[0..31]	Quadlet offset for the absolute value CSR for Sharpness.
70Ch	ABS_CSR_HI_INQ_3	[0..31]	Quadlet offset for the absolute value CSR for White Balance.
710h	ABS_CSR_HI_INQ_4	[0..31]	Quadlet offset for the absolute value CSR for Hue.
714h	ABS_CSR_HI_INQ_5	[0..31]	Quadlet offset for the absolute value CSR for Saturation.
718h	ABS_CSR_HI_INQ_6	[0..31]	Quadlet offset for the absolute value CSR for Gamma.
71Ch	ABS_CSR_HI_INQ_7	[0..31]	Quadlet offset for the absolute value CSR for Shutter.
720h	ABS_CSR_HI_INQ_8	[0..31]	Quadlet offset for the absolute value CSR for Gain.
724h	ABS_CSR_HI_INQ_9	[0..31]	Quadlet offset for the absolute value CSR for Iris.
728h	ABS_CSR_HI_INQ_10	[0..31]	Quadlet offset for the absolute value CSR for Focus.
72Ch	ABS_CSR_HI_INQ_11	[0..31]	Quadlet offset for the absolute value CSR for Temperature.
730h	ABS_CSR_HI_INQ_12	[0..31]	Quadlet offset for the absolute value CSR for Trigger.
734h	ABS_CSR_HI_INQ_13	[0..31]	Quadlet offset for the absolute value CSR for Trigger Delay.
73Ch	ABS_CSR_HI_INQ_15	[0..31]	Quadlet offset for the absolute value CSR for Frame Rate.
740h - 77Fh	Reserved		

Offset	Name	Bit	Description
7C4h	ABS_CSR_LO_INQ_1	[0..31]	Quadlet offset for the absolute value CSR for Pan.
7C8h	ABS_CSR_LO_INQ_2	[0..31]	Quadlet offset for the absolute value CSR for Tilt.

Current Absolute Value Register Offsets

The absolute value offsets that would be derived using the quadlet offset information in the Inquiry Registers for Absolute Value CSR Offset Addresses section would be as follows:

These offsets are current as of the revision date. They are subject to change without notice.

Offset	Name	Field	Bit	Description
900h	ABS_VAL_AUTO_EXPOSURE	Min_Value	[0-31]	Min auto exposure value.
904h		Max_Value	[0-31]	Max auto exposure value.
908h		Value	[0-31]	Current auto exposure value.
910h	ABS_VAL_SHUTTER	Min_Value	[0-31]	Min shutter value seconds
914h		Max_Value	[0-31]	Max shutter value seconds
918h		Value	[0-31]	Current shutter value seconds
920h	ABS_VAL_GAIN	Min_Value	[0-31]	Min gain value dB
924h		Max_Value	[0-31]	Max gain value dB
928h		Value	[0-31]	Current gain value dB
930h	ABS_VAL_BRIGHTNESS	Min_Value	[0-31]	Min brightness value %
934h		Max_Value	[0-31]	Max brightness value %
938h		Value	[0-31]	Current brightness value %
940h	ABS_VAL_GAMMA	Min_Value	[0-31]	Min gamma value
944h		Max_Value	[0-31]	Max gamma value
948h		Value	[0-31]	Current gamma value
950h	ABS_VAL_TRIGGER_DELAY	Min_Value	[0-31]	Min delay value seconds
954h		Max_Value	[0-31]	Max delay value seconds
958h		Value	[0-31]	Current delay value seconds
960h	ABS_VAL_FRAME_RATE	Min_Value	[0-31]	Min frame rate FPS
964h		Max_Value	[0-31]	Max frame rate FPS
968h		Value	[0-31]	Current frame rate FPS
970h	ABS_VAL_HUE	Min_Value	[0-31]	Min hue deg
974h		Max_Value	[0-31]	Max hue deg

Offset	Name	Field	Bit	Description
978h		Value	[0-31]	Current hue deg
980h	ABS_VAL_SATURATION	Min_Value	[0-31]	Min saturation %
984h		Max_Value	[0-31]	Max saturation %
988h		Value	[0-31]	Current saturation %

Absolute Value Register Format

Offset	Name	Field	Bit	Description
000h	Absolute Value	Min_Value	[0-31]	Minimum value for this feature. Read only.
004h		Max_Value	[0-31]	Maximum value for this feature. Read only.
008h		Value	[0-31]	Current value of this feature.

0-7	8-15	16-23	24-31
Floating-point value with IEEE/REAL*4 format			

Sign(S)	Exponent(exp)	Mantissa(m)
1bit	8bit	23bit

Units of Value for Absolute Value CSR Registers

The following tables describe the real-world units that are used for the absolute value registers. Each value is either Absolute (value is an absolute value) or Relative (value is an absolute value, but the reference is system dependent).

Feature element name	Function	Unit	Unit Description	Reference point	Value Type
Brightness	Black level offset	%		---	Absolute
Auto Exposure	Auto Exposure	EV	exposure value	0	Relative
White_Balance	White Balance	K	kelvin	---	Absolute
Hue	Hue	deg	degree	0	Relative
Saturation	Saturation	%		100	Relative
Shutter	Integration time	s	seconds	---	Absolute
Gain	Circuit gain	dB	decibel	0	Relative
Iris	Iris	F	F number	---	Absolute
Focus	Focus	m	meter	---	Absolute
Trigger	External Trigger	times		---	Absolute
Trigger_Delay	Trigger Delay	S	seconds	---	Absolute
Frame_Rate	Frame rate	fps	frames per second	---	Absolute

Determining Absolute Value Register Values

The Absolute Value CSRs store 32-bit floating-point values with IEEE/REAL*4 format, as described in [Absolute Value Register Format on previous page](#). To programmatically determine the floating point equivalents of the minimum, maximum and current hexadecimal values for a property such as shutter, using the FlyCapture SDK:

1. Read the ABS_CSR_HI_INQ_7 register 71Ch to obtain the quadlet offset for the absolute value CSR for shutter.

```
cam.ReadRegister(context, 0x71C, &ulValue);
```

2. The 32-bit ulValue is a quadlet offset, so multiply by 4 to get the actual offset.

```
ulValue = ulValue * 4; // ulValue == 0x3C0244, actual offset == 0xF00910
```

This offset represents the offset from the base address 0xFFFF Fxxx xxxx. Since the PGR FlyCapture API automatically takes into account the base offset 0xFFFF F0F0 0000, the actual offset in this example would be 0x910.

3. Use the offset obtained to read the min, max and current absolute values and convert the 32-bit hexadecimal values to floating point.

```
// declare a union of a floating point and unsigned long
typedef union _AbsValueConversion
{
    unsigned long ulValue;
    float fValue;
} AbsValueConversion;

float fMinShutter, fMaxShutter, fCurShutter;AbsValueConversion
minShutter, maxShutter, curShutter;

// read the 32-bit hex value into the unsigned long member
cam.ReadRegister(context, 0x910, &minShutter.ulValue );
cam.ReadRegister(context, 0x914, &maxShutter.ulValue );
cam.ReadRegister(context, 0x918, &curShutter.ulValue );
fMinShutter = minShutter.fValue;
fMaxShutter = maxShutter.fValue;
fCurShutter = curShutter.fValue;
```


To get and set absolute values using the FlyCapture SDK, use the GetProperty and SetProperty functions to get or set the

`absValue` member of the `Property` struct. Refer to the FlyCapture SDK Help for function definitions.

Setting Absolute Value Register Values

The user must write a 1 to bit [1] of the associated feature CSR to change the Value field of this register from being read-only. For example, to enable absolute value control of shutter, bit [1] of SHUTTER register 0x81C must be set to 1. In the FlyCapture API, this can also be done by setting the `absControl` member of the of the desired property structure to true.

Appendix E: GenICam Features

The following features are included in the XML device description file on the camera to control, monitor, and query the camera operation. Features conform to the standard features and naming convention (SFNC) of the GenICam standard, except where noted. For information about accessing the device description file, see [GenICam Applications on page 25](#)

Device Control

DeviceVendorName
DeviceModelName
DeviceVersion
DeviceFirmwareVersion
DeviceID
DeviceScanType
DeviceMaxThroughput
DeviceAssignedBandwidth (non-SFNC): Reports the bandwidth, in byte/second, that is assigned to the camera. This value is calculated from Link Speed, Packet Size and Packet Delay ([page 19](#)).
DeviceCurrentThroughput (non-SFNC): Reports the data throughput, in byte/second, the camera is currently outputting on the network. This value is equivalent to either DeviceAssignedBandwidth or DeviceMaxThroughput, whichever is lower.
DeviceTemperature

Analog Control

Gain
GainRaw
GainAuto
BlackLevel
BlackLevelEnabled (non-SFNC): Turns black level on/off.
Gamma
GammaEnabled (non-SFNC): Turns gamma on/off.
Sharpness (non-SFNC): Controls sharpness.
Hue (non-SFNC): Controls hue.
Saturation (non-SFNC): Controls saturation.

Image Format Control

SensorWidth
SensorHeight
WidthMax
HeightMax
Width
Height
OffsetX
OffsetY
ReverseX
PixelFormat
PixelCoding
PixelSize

PixelColorFilter

TestImageSelector

BinningHorizontal

BinningVertical

VideoMode (non-SFNC): Controls the video mode. Values are Mode0, Mode1,...

Acquisition Control

AcquisitionMode

AcquisitionFrameCount

AcquisitionFrameRate

AcquisitionFrameRateEnable (non-SFNC): Enables limiting frame rate to a specific value.

AcquisitionFrameRateAuto (non-SFNC): Enables auto control of frame rate.

TriggerSelector

TriggerMode

TriggerSoftware

TriggerSource

TriggerActivation

TriggerDelay

TriggerDelayEnabled (non-SFNC): Turns trigger delay on/off.

ExposureMode

ExposureTime

ExposureAuto

Digital I/O Control

LineSelector

LineMode

LineInverter

LineStatus

LineStatusAll

LineSource

UserOutputValue

StrobeEnabled (non-SFNC): Turns strobe on/off.

Transport Layer Control

PayloadSize

GevVersionMajor

GevVersionMinor

GevDeviceModelsBigEndian

GevDeviceModeCharacterSet

GevInterfaceSelector

GevMACAddress

GevSupportedOptionSelector

GevSupportedOption

GevCurrentIPConfigurationLLA

GevCurrentIPConfigurationDHCP

GevCurrentIPConfigurationPersistentIP

GevCurrentIPAddress

GevCurrentSubnetMask

GevCurrentDefaultGateway

GevNumberOfInterfaces

GevPersistentIPAddress

GevPersistentSubnetMask

GevPersistentDefaultGateway

GevLinkSpeed
GevMessageChannelCount
GevStreamChannelCount
GevHeartbeatTimeout
GevGVPCHearbeatDisable
GevTimestampTickFrequency
GevCCP
GevStreamChannelSelector
GevSCPIInterfaceIndex
GevSCPSFireTestPacket
GevSCPSDoNotFragment
GevSCPSBigEndian
GevSCPSPacketSize
GevSCPD
GevSCDA

User Set Control

UserSetCurrent (non-SFNC): Indicates which user configuration set is currently in use.
UserSetSelector
UserSetSave
UserSetLoad
UserSetDefaultSelector

Appendix F: GigE Vision Bootstrap Registers

The camera supports the following GigE Vision bootstrap registers. All registers are implemented according to version 1.2 of the GigE Vision standard.

Register	Address (no offset)
Version	0000h
Device Mode	0004h
Device MAC	0008h
Supported IP Configuration	0010h
Current IP Configuration	0014h
Current IP Address	0024h
Current Subnet Mask	0034h
Current Default Gateway	0044h
Manufacturer Name	0048h
Model Name	0068h
Device Version	0088h
Manufacturer Info	00A8h
Serial Number	00D8h
First URL	0200h
Second URL	0400h
Number of Network Interfaces	0600h
Persistent IP Address	064Ch
Persistent Subnet Mask	065Ch
Persistent Default Gateway	066Ch
Link Speed	0670h
Number of Message Channels	0900h
Number of Stream Channels	0904h
Stream Channels Capability	092Ch
GVCP Capability	0934h
Heartbeat Timeout	0938h
Timestamp Tick Frequency	093Ch (high part) 0940h (low part)
Timestamp Control	0944h
Timestamp Value	0948h (high part)

Register	Address (no offset)
	094Ch (low part)
GVCP Configuration	0954h
Control Channel Privelege	0A00h
Stream Channel Port	0D00h + 40h * x with 0 <= x < 512
Stream Channel Packet Size	0D04h + 40h * x with 0 <= x < 512
Stream Channel Packet Delay	0D08h + 40h * x with 0 <= x < 512
Stream Channel Destination Address	0D18h + 40h * x with 0 <= x < 512

Appendix G: Contacting Point Grey Research

For any questions, concerns or comments please contact us via the following methods:

Email:	For all general questions about Point Grey Research please contact us at info@ptgrey.com . For technical support (existing customers only) contact us at www.ptgrey.com/support/contact/ .		
Knowledge Base:	Find answers to commonly asked questions in our knowledge base at www.ptgrey.com/support/kb/ .		
Downloads:	Users can download the latest manuals and software from www.ptgrey.com/support/downloads/ .		
Main Office:	Mailing Address: Point Grey Research, Inc. 12051 Riverside Way Richmond, BC, Canada V6W 1K7	Tel: +1 (604) 242-9937 Toll-free (North America only): +1 (866) 765-0827 Fax: +1 (604) 242-9938 sales@ptgrey.com	
Distributors			
USA	Tel: +1 (866) 765-0827 na-sales@ptgrey.com		
Europe & Israel	Mailing Address: Point Grey Research GmbH Schwieberdinger Strasse 60 71636 Ludwigsburg Germany	Tel: +49 7141 488817-0 Fax: +49 7141 488817-99 eu-sales@ptgrey.com	
Japan	ViewPLUS Inc. (www.viewplus.co.jp/)		
Korea	Cylod Co. Ltd. (www.cylod.com)		
China	LUSTER LightVision Tech. Co., Ltd (www.lusterlighttech.com)		
Singapore, Malaysia and Thailand	Voltrium Systems Pte Ltd. (www.voltrium.com.sg)		
Taiwan	Apo Star Co., Ltd. (www.apostar.com.tw)		

Appendix H: Revision History

Revision	Date	Notes
1.0	September 17, 2010	<ul style="list-style-type: none"> Initial version
1.1	December 6, 2010	<ul style="list-style-type: none"> Camera Dimensions on page 108: Added more measurements to camera rear dimensional diagram. Memory Channel Registers on page 27: Added four GigE Vision bootstrap registers saved to memory channels. AE_ROI: 1A70 – 1A74h on page 90: Added support for this register. White Balance on page 99: Added white balance may be unresponsive in auto mode if auto exposure is < 0.1 EV (approximately). Case Temperature and Heat Dissipation on page 17: Changed first sentence to: "You must provide sufficient heat dissipation to control the internal operating temperature of the camera." Also added: "A large lens may also act as an effective heat sink." GenICam Features on page 139: Added DeviceMaximumThroughput, DeviceAssignedBandwidth and DeviceCurrentThroughput Device Control features. GS2-GE-20S4 Specifications on page 11, GS2-GE-50S5 Specifications on page 14: Added photon transfer curve measurements.
1.2	May 12, 2011	<ul style="list-style-type: none"> Strobe Signal Output Registers on page 69: Added GPIO_XTRA register 1104h. Added support for Trigger_Mode_13 ("Low Smear-Trigger Mode") on page 58.
1.3	August 29, 2011	<ul style="list-style-type: none"> Vertical Smear on page 115: Added information about reducing smear in free-running and trigger modes. Main Status Indicator LED on page 29: Change in LED behavior during IP addressing.

Index

A

A/D converter	16
absolute value mode	24
absolute value registers	134
absolute values	
shutter conversion	85
AE_ROI register 1A70-1A74h	90
API	
camera control	25
artifacts	115
asynchronous trigger	53
between trigger behavior	54
ensuring trigger armed	61
maximum frame rate	54
minimum pulse length	54
timing	53
auto control	23
auto exposure	87
auto exposure on ROI	90
AUTO_EXPOSURE register 804h	88
AUTO_EXPOSURE_RANGE register 1088h	88
AUTO_GAIN_RANGE register 10A0h	89
AUTO_SHUTTER_RANGE register 1098h	89

B

bandwidth	
calculating availability	21
multiple cameras	22
base address	116
basic functions	
inquiry registers	122
Bayer Tile color conversion	102
Bayer tile pattern	102
BAYER_TILE_MAPPING register 1040h	103

binning	43
black level	82
Blemish pixel correction	106
blemish pixels	115
boot-up behavior	29
bootstrap registers (GigE Vision)	142
brightness	82
BRIGHTNESS register 800h	82
buffer	76
BUILD_TIMESTAMP register 1F40h	35
bulb shutter trigger mode	56

C

cables	38
calculating register offset	119
camera control	
flycap demo program	25
FlyCapture API	25
camera model	34
camera setting conversion formulas	24
camera settings embedded in image	104
CAMERA_POWER register 610h	18
card (network interface)	38
circuit	
GPIO bi-directional	41
GPIO opto-isolated input	39
GPIO opto-isolated output	40
cleaning	17
color conversion	102
color filter array	102
color interpolation	102
color processing	102
config ROM registers	117
configuration file	25
configuration sets	26
connector	38
contacting Point Grey	144
conversion formulas for camera settings	24

CSR base address	116	feature elements	
CUR_MEM_CH register 624h	27	inquiry registers	125
CURRENT register 1A58h - 1A5Ch	32	feature presence	
CURRENT_FRAME_RATE register 600h	50	inquiry registers	123
CURRENT_VIDEO_FORMAT register	50	filter	112
608h		firmware	
CURRENT_VIDEO_MODE register 604h	50	version	10
custom image modes	43	FIRMWARE_BUILD_DATE register 1F64h	35
CYCLE_TIME register	106	FIRMWARE_DESCRIPTION register 36	
		1F68h-1F7Ch	
D			
data flash	36	FIRMWARE_VERSION register 1F60h	35
data modes		flash memory	36
customizable	43	flipped image	104
DATA_FLASH_CTRL register 1240h	36	flycap demo program	25
DATA_FLASH_DATA register 1244h	36	FlyCapture API	25
dead pixels	115	FORMAT_7_RESIZE_INQ register	130
debouncer	54	1AC8h	
device description file (XML)	25	formats	
Dimensional drawings		changing while triggering	55
camera	108	inquiry registers	120
tripod adapter	110	frame buffer	76
dust protection	111	frame grabber	38
E			
electrostatic charge	17	frame rate	
embedded image information	104	calculating maximum in external trigger mode	54
environmental conditions	17, 111	inquiry registers	120
exposure time	83	frame rate, partial image mode	133
extended shutter	84	FRAME_INFO register 12F8h	104
external trigger	53	FRAME_RATE register 83Ch	49
between trigger behavior	54	G	
ensuring trigger armed	61	gain	86, 98
maximum frame rate	54	GAIN register 820h	86
minimum duration	54	GAMMA register 818h	91
timing	53	GenICam	
F			
compliance		compliance	25
failed frame transmission count	33	features	139
		GigE bandwidth	21
		multiple cameras	22

GigE Configurator tool	18	high dynamic range (HDR) mode	52
GigE connector	38	HORIZONTAL_LINE_FREQ register	34
GigE interface card	38	1AF4h	
GigE Vision standard		hot pixels	115
bootstrap registers	142	hue	97
GPIO	38	HUE register 810h	97
bidirectional circuit	41		I
electrical characteristics	39	image information embedded	104
opto-isolated input circuit	39	IMAGE_RETRANSMIT register 634h	77
opto-isolated output circuit	40	infrared (IR) cutoff filter	112
pulse width modulation (PWM) mode	73	initialization behavior	29
strobe start control	73	INITIALIZE register 000h	31
GPIO_CTRL_PIN_0 register 1110h	74	input circuit	39
GPIO_CTRL_PIN_1 register 1120h	75	input pins	39
GPIO_CTRL_PIN_2 register 1130h	75	inquiry registers	
GPIO_CTRL_PIN_3 register 1140h	76	basic functions	122
GPIO_STRPAT_CTRL register 110Ch	71	feature elements	125
GPIO_STRPAT_MASK_PIN_0 register	72	feature presence	123
1118h		video format mode frame rate	120
GPIO_STRPAT_MASK_PIN_1 register	72	integration time	83
1128h		internal trigger	62
GPIO_STRPAT_MASK_PIN_2 register	72	IP addressing	18
1138h		ISO_EN/CONTINUOUS_SHOT register	51
GPIO_XTRA register 1104h	73	614h	
GPIO_XTRA_PIN_1 register 1124h	75		L
GPIO_XTRA_PIN_2 register 1134h	76	LED Behavior	29
GPIO_XTRA_PIN_3 register 1144h	76	LED_CTRL register 1A14h	30
GPIO_XTRA_PIN_0 register 1114h	74		lens
greyscale conversion	102	cleaning	17
		linux support	26
		long shutter	84
		low smear trigger mode	58
		LUT registers 000h - 048h	92
			M
		macintosh support	26
		MAIN_BOARD_INFO register 1F24h	34

manual control	23	pinout	
MEM_SAVE_CH register 620h	26	GPIO	38
memory		PIO_DIRECTION register 11F8h	65
flash memory	36	pixel binning	43
memory channel registers	27	pixel correction	106
memory channels	26	PIXEL_CLOCK_FREQ register 1AF0h	34
MEMORY_SAVE register 618h	26	PIXEL_DEFECT_CTRL register 1A60h	107
mirror image	104	Point Grey	
MIRROR_IMAGE_CTRL register 1054h	104	contacting	144
modes		powering the camera	18
inquiry registers	120	presence of features	
modes (video)	43	inquiry registers	123
monochrome conversion	102	pulse width modulation (PWM) mode	73
mounting	112	(GPIO)	
camera case	112	Q	
multi-shot trigger mode	59	quadlet offsets	119
multiple cameras	22	R	
multiple exposure preset trigger mode	57	raw data	
multiple exposure pulse width trigger mode	57	interpolating	102
N		region of interest (ROI)	43
network configuration	19	region of interest exposure	90
network interface card	38	registers	
O		about	23
offset	119	absolute value	24, 134
ON/OFF control	23	bootstrap (GigE Vision)	142
one-push control	23	calculating address	119
ONE_SHOT/MULTI_SHOT register 61Ch	51	config ROM	117
optocoupler	39	inquiry	24, 120
output circuit	40	memory map	116
output pins	39	video mode	129
output pulse	66	registers commonly accessed	
overlapped exposure/readout trigger mode	58	AE_ROI 1A70-1A74h	90
P		AUTO_EXPOSURE 804h	88
packet delay	20	AUTO_EXPOSURE_RANGE 1088h	88
packet size	19	AUTO_GAIN_RANGE 10A0h	89
partial image modes	43	AUTO_SHUTTER_RANGE 1098h	89
		BAYER_TILE_MAPPING 1040h	103

BRIGHTNESS 800h.....	82	MEMORY_SAVE 618h.....	26
BUILD_TIMESTAMP 1F40h.....	35	MEMORY_SAVE_CH 620h.....	26
CUR_MEM_CH 624h.....	27	MIRROR_IMAGE_CTRL 1054h.....	104
CURRENT 1A58h - 1A5Ch.....	32	ONE_SHOT / MULTI_SHOT 61Ch.....	51
CURRENT_VIDEO_FORMAT 608h.....	50	PIO_DIRECTION 11F8h.....	65
CURRENT_VIDEO_MODE 604h.....	50	PIXEL_CLOCK_FREQ 1AF0h.....	34
DATA_FLASH_CTRL 1240h.....	36	PIXEL_DEFECT_CTRL 1A60h.....	107
DATA_FLASH_DATA 1244h.....	36	SATURATION 814h.....	96
FIRMWARE_BUILD_DATE 1F64h.....	35	SENSOR_BOARD_INFO 1F28h.....	35
FIRMWARE_DESCRIPTION 1F68 - 1F7Ch36		SERIAL_NUMBER 1F20h.....	34
FIRMWARE_VERSION 1F60h.....	35	SHARPNESS 808h.....	99
FRAME_INFO 12F8h.....	104	SHUTTER 81Ch.....	84
FRAME_RATE 83Ch.....	49	SOFTWARE_TRIGGER 62Ch.....	65
GAIN 820h.....	86	TEMPERATURE 82Ch.....	32
GAMMA 818h.....	91	TEST_PATTERN 104Ch.....	81
GPIO_CTRL_PIN_0 1110h.....	74	TIME_FROM_BUS_RESET 12E4h.....	31
GPIO_CTRL_PIN_1 1120h.....	75	TIME_FROM_INITIALIZE 12E0h.....	31
GPIO_CTRL_PIN_2 1130h.....	75	TRIGGER_DELAY 834h.....	64
GPIO_CTRL_PIN_3 1140h.....	76	TRIGGER_MODE 830h.....	63
GPIO_STRPAT_CTRL 110Ch.....	71	VMODE_ERROR_STATUS 628h.....	33
GPIO_STRPAT_MASK_PIN_0 1118h... 72		VOLTAGE 1A50h - 1A54h.....	31
GPIO_STRPAT_MASK_PIN_1 1128h... 72		WHITE_BALANCE 80Ch.....	100
GPIO_STRPAT_MASK_PIN_2 1138h... 72		XMIT_FAILURE 12FCh.....	33
GPIO_XTRA 1104h.....	73	requirements, hardware & software.....	25
GPIO_XTRA_PIN_0 1114h.....	74	reset camera to default settings... 31, 117-118	
GPIO_XTRA_PIN_1 1124h.....	75	retransmitting images.....	76
GPIO_XTRA_PIN_2 1134h.....	76	S	
GPIO_XTRA_PIN_3 1144h.....	76	saturation.....	96
HDR 1800h - 1884h.....	52	SATURATION register 814h.....	96
HORIZONTAL_LINE_FREQ 1AF4h.....	34	saving camera settings.....	26
HUE 810h.....	97	SENSOR_BOARD_INFO register 1F28.....	35
IMAGE_RETRANSMIT 634h.....	77	SERIAL_NUMBER register 1F20h.....	34
INITIALIZE 000h.....	31	settings embedded in image.....	104
ISO_EN / CONTINUOUS_SHOT 614h..	51	sharpness.....	98
LED_CTRL 1A14h.....	30	SHARPNESS register 808h.....	99
LUT 80000h - 80048h.....	92	shutter.....	83
MAIN_BOARD_INFO 1F24h.....	34	absolute value conversion.....	85

extended	84	timing	53
relation to frame rate	83	TRIGGER_DELAY register 834h	64
SHUTTER register 81Ch	84	TRIGGER_MODE register 830h	63
signal debouncer	54	Trigger_Mode_0	55
skip frames trigger mode	56	Trigger_Mode_1	56
smear reduction	58	Trigger_Mode_13	58
software features (GenICam)	139	Trigger_Mode_14	58
software requirements	25	Trigger_Mode_15	59
software trigger	62	Trigger_Mode_3	56
SOFTWARE_TRIGGER register 62Ch	65	Trigger_Mode_4	57
standard external trigger mode	55	Trigger_Mode_5	57
Status LED	29	triggered acquisition	
strobe output functionality	66	supported modes	55
subsampling	43	tripod adapter	
support	114	dimensional drawings	110
system requirements	25		
V			
value field for CSR registers			
24			
technical support	114	video format	
temperature	17	inquiry registers	120
TEMPERATURE register 82Ch	32	video modes	43
Test pattern	80	registers	129
TEST_PATTERN register 104C	81	VMODE_ERRO_STATUS register 628h	33
throughput	21	voltage	18
multiple cameras	22	VOLTAGE register 1A50h - 1A54h	31
TIME_FROM_BUS_RESET register 12E4h	31		
TIME_FROM_INITIALIZE register 12E0h	31	W	
timestamp	104	warranty	2
transmission failure		white balance	99
frame count	33	white blemish pixel correction	106
transmitting images	76	white pixels	115
trigger	53	WHITE_BALANCE register 80Ch	100
between trigger behavior	54		
changing video modes during	55	X	
ensuring trigger armed	61	XMIT_FAILURE register 12FCh	33
maximum frame rate	54	XML device description file	25
minimum duration	54		
software	62		