add part of opencv

This commit is contained in:
Tang1705
2020-01-27 20:20:56 +08:00
parent 0c4ac1d8bb
commit a71fa47620
6518 changed files with 3122580 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,656 @@
#pragma once
#include "opencv2/core/ocl.hpp"
namespace cv
{
void clipObjects(Size sz, std::vector<Rect>& objects,
std::vector<int>* a, std::vector<double>* b);
class FeatureEvaluator
{
public:
enum
{
HAAR = 0,
LBP = 1,
HOG = 2
};
struct ScaleData
{
ScaleData() { scale = 0.f; layer_ofs = ystep = 0; }
Size getWorkingSize(Size winSize) const
{
return Size(std::max(szi.width - winSize.width, 0),
std::max(szi.height - winSize.height, 0));
}
float scale;
Size szi;
int layer_ofs, ystep;
};
virtual ~FeatureEvaluator();
virtual bool read(const FileNode& node, Size origWinSize);
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const;
int getNumChannels() const { return nchannels; }
virtual bool setImage(InputArray img, const std::vector<float>& scales);
virtual bool setWindow(Point p, int scaleIdx);
const ScaleData& getScaleData(int scaleIdx) const
{
CV_Assert( 0 <= scaleIdx && scaleIdx < (int)scaleData->size());
return scaleData->at(scaleIdx);
}
virtual void getUMats(std::vector<UMat>& bufs);
virtual void getMats();
Size getLocalSize() const { return localSize; }
Size getLocalBufSize() const { return lbufSize; }
virtual float calcOrd(int featureIdx) const;
virtual int calcCat(int featureIdx) const;
static Ptr<FeatureEvaluator> create(int type);
protected:
enum { SBUF_VALID=1, USBUF_VALID=2 };
int sbufFlag;
bool updateScaleData( Size imgsz, const std::vector<float>& _scales );
virtual void computeChannels( int, InputArray ) {}
virtual void computeOptFeatures() {}
Size origWinSize, sbufSize, localSize, lbufSize;
int nchannels;
Mat sbuf, rbuf;
UMat urbuf, usbuf, ufbuf, uscaleData;
Ptr<std::vector<ScaleData> > scaleData;
};
class CascadeClassifierImpl CV_FINAL : public BaseCascadeClassifier
{
public:
CascadeClassifierImpl();
virtual ~CascadeClassifierImpl() CV_OVERRIDE;
bool empty() const CV_OVERRIDE;
bool load( const String& filename ) CV_OVERRIDE;
void read( const FileNode& node ) CV_OVERRIDE;
bool read_( const FileNode& node );
void detectMultiScale( InputArray image,
CV_OUT std::vector<Rect>& objects,
double scaleFactor = 1.1,
int minNeighbors = 3, int flags = 0,
Size minSize = Size(),
Size maxSize = Size() ) CV_OVERRIDE;
void detectMultiScale( InputArray image,
CV_OUT std::vector<Rect>& objects,
CV_OUT std::vector<int>& numDetections,
double scaleFactor=1.1,
int minNeighbors=3, int flags=0,
Size minSize=Size(),
Size maxSize=Size() ) CV_OVERRIDE;
void detectMultiScale( InputArray image,
CV_OUT std::vector<Rect>& objects,
CV_OUT std::vector<int>& rejectLevels,
CV_OUT std::vector<double>& levelWeights,
double scaleFactor = 1.1,
int minNeighbors = 3, int flags = 0,
Size minSize = Size(),
Size maxSize = Size(),
bool outputRejectLevels = false ) CV_OVERRIDE;
bool isOldFormatCascade() const CV_OVERRIDE;
Size getOriginalWindowSize() const CV_OVERRIDE;
int getFeatureType() const CV_OVERRIDE;
void* getOldCascade() CV_OVERRIDE;
void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) CV_OVERRIDE;
Ptr<MaskGenerator> getMaskGenerator() CV_OVERRIDE;
protected:
enum { SUM_ALIGN = 64 };
bool detectSingleScale( InputArray image, Size processingRectSize,
int yStep, double factor, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
Size sumSize0, bool outputRejectLevels = false );
#ifdef HAVE_OPENCL
bool ocl_detectMultiScaleNoGrouping( const std::vector<float>& scales,
std::vector<Rect>& candidates );
#endif
void detectMultiScaleNoGrouping( InputArray image, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
double scaleFactor, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels = false );
enum { MAX_FACES = 10000 };
enum { BOOST = 0 };
enum { DO_CANNY_PRUNING = CASCADE_DO_CANNY_PRUNING,
SCALE_IMAGE = CASCADE_SCALE_IMAGE,
FIND_BIGGEST_OBJECT = CASCADE_FIND_BIGGEST_OBJECT,
DO_ROUGH_SEARCH = CASCADE_DO_ROUGH_SEARCH
};
friend class CascadeClassifierInvoker;
friend class SparseCascadeClassifierInvoker;
template<class FEval>
friend int predictOrdered( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictCategorical( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictOrderedStump( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictCategoricalStump( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
int runAt( Ptr<FeatureEvaluator>& feval, Point pt, int scaleIdx, double& weight );
class Data
{
public:
struct DTreeNode
{
int featureIdx;
float threshold; // for ordered features only
int left;
int right;
};
struct DTree
{
int nodeCount;
};
struct Stage
{
int first;
int ntrees;
float threshold;
};
struct Stump
{
Stump() : featureIdx(0), threshold(0), left(0), right(0) { }
Stump(int _featureIdx, float _threshold, float _left, float _right)
: featureIdx(_featureIdx), threshold(_threshold), left(_left), right(_right) {}
int featureIdx;
float threshold;
float left;
float right;
};
Data();
bool read(const FileNode &node);
int stageType;
int featureType;
int ncategories;
int minNodesPerTree, maxNodesPerTree;
Size origWinSize;
std::vector<Stage> stages;
std::vector<DTree> classifiers;
std::vector<DTreeNode> nodes;
std::vector<float> leaves;
std::vector<int> subsets;
std::vector<Stump> stumps;
};
Data data;
Ptr<FeatureEvaluator> featureEvaluator;
Ptr<CvHaarClassifierCascade> oldCascade;
Ptr<MaskGenerator> maskGenerator;
UMat ugrayImage;
UMat ufacepos, ustages, unodes, uleaves, usubsets;
#ifdef HAVE_OPENCL
ocl::Kernel haarKernel, lbpKernel;
bool tryOpenCL;
#endif
Mutex mtx;
};
#define CC_CASCADE_PARAMS "cascadeParams"
#define CC_STAGE_TYPE "stageType"
#define CC_FEATURE_TYPE "featureType"
#define CC_HEIGHT "height"
#define CC_WIDTH "width"
#define CC_STAGE_NUM "stageNum"
#define CC_STAGES "stages"
#define CC_STAGE_PARAMS "stageParams"
#define CC_BOOST "BOOST"
#define CC_MAX_DEPTH "maxDepth"
#define CC_WEAK_COUNT "maxWeakCount"
#define CC_STAGE_THRESHOLD "stageThreshold"
#define CC_WEAK_CLASSIFIERS "weakClassifiers"
#define CC_INTERNAL_NODES "internalNodes"
#define CC_LEAF_VALUES "leafValues"
#define CC_FEATURES "features"
#define CC_FEATURE_PARAMS "featureParams"
#define CC_MAX_CAT_COUNT "maxCatCount"
#define CC_HAAR "HAAR"
#define CC_RECTS "rects"
#define CC_TILTED "tilted"
#define CC_LBP "LBP"
#define CC_RECT "rect"
#define CC_HOG "HOG"
#define CV_SUM_PTRS( p0, p1, p2, p3, sum, rect, step ) \
/* (x, y) */ \
(p0) = sum + (rect).x + (step) * (rect).y, \
/* (x + w, y) */ \
(p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \
/* (x, y + h) */ \
(p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \
/* (x + w, y + h) */ \
(p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height)
#define CV_TILTED_PTRS( p0, p1, p2, p3, tilted, rect, step ) \
/* (x, y) */ \
(p0) = tilted + (rect).x + (step) * (rect).y, \
/* (x - h, y + h) */ \
(p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \
/* (x + w, y + w) */ \
(p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \
/* (x + w - h, y + w + h) */ \
(p3) = tilted + (rect).x + (rect).width - (rect).height \
+ (step) * ((rect).y + (rect).width + (rect).height)
#define CALC_SUM_(p0, p1, p2, p3, offset) \
((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset])
#define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset)
#define CV_SUM_OFS( p0, p1, p2, p3, sum, rect, step ) \
/* (x, y) */ \
(p0) = sum + (rect).x + (step) * (rect).y, \
/* (x + w, y) */ \
(p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \
/* (x, y + h) */ \
(p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \
/* (x + w, y + h) */ \
(p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height)
#define CV_TILTED_OFS( p0, p1, p2, p3, tilted, rect, step ) \
/* (x, y) */ \
(p0) = tilted + (rect).x + (step) * (rect).y, \
/* (x - h, y + h) */ \
(p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \
/* (x + w, y + w) */ \
(p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \
/* (x + w - h, y + w + h) */ \
(p3) = tilted + (rect).x + (rect).width - (rect).height \
+ (step) * ((rect).y + (rect).width + (rect).height)
#define CALC_SUM_OFS_(p0, p1, p2, p3, ptr) \
((ptr)[p0] - (ptr)[p1] - (ptr)[p2] + (ptr)[p3])
#define CALC_SUM_OFS(rect, ptr) CALC_SUM_OFS_((rect)[0], (rect)[1], (rect)[2], (rect)[3], ptr)
//---------------------------------------------- HaarEvaluator ---------------------------------------
class HaarEvaluator CV_FINAL : public FeatureEvaluator
{
public:
struct Feature
{
Feature();
bool read(const FileNode& node, const Size& origWinSize);
bool tilted;
enum { RECT_NUM = 3 };
struct RectWeigth
{
Rect r;
float weight;
} rect[RECT_NUM];
};
struct OptFeature
{
OptFeature();
enum { RECT_NUM = Feature::RECT_NUM };
float calc( const int* pwin ) const;
void setOffsets( const Feature& _f, int step, int tofs );
int ofs[RECT_NUM][4];
float weight[4];
};
HaarEvaluator();
virtual ~HaarEvaluator() CV_OVERRIDE;
virtual bool read( const FileNode& node, Size origWinSize) CV_OVERRIDE;
virtual Ptr<FeatureEvaluator> clone() const CV_OVERRIDE;
virtual int getFeatureType() const CV_OVERRIDE { return FeatureEvaluator::HAAR; }
virtual bool setWindow(Point p, int scaleIdx) CV_OVERRIDE;
Rect getNormRect() const;
int getSquaresOffset() const;
float operator()(int featureIdx) const
{ return optfeaturesPtr[featureIdx].calc(pwin) * varianceNormFactor; }
virtual float calcOrd(int featureIdx) const CV_OVERRIDE
{ return (*this)(featureIdx); }
protected:
virtual void computeChannels( int i, InputArray img ) CV_OVERRIDE;
virtual void computeOptFeatures() CV_OVERRIDE;
Ptr<std::vector<Feature> > features;
Ptr<std::vector<OptFeature> > optfeatures;
Ptr<std::vector<OptFeature> > optfeatures_lbuf;
bool hasTiltedFeatures;
int tofs, sqofs;
Vec4i nofs;
Rect normrect;
const int* pwin;
OptFeature* optfeaturesPtr; // optimization
float varianceNormFactor;
};
inline HaarEvaluator::Feature :: Feature()
{
tilted = false;
rect[0].r = rect[1].r = rect[2].r = Rect();
rect[0].weight = rect[1].weight = rect[2].weight = 0;
}
inline HaarEvaluator::OptFeature :: OptFeature()
{
weight[0] = weight[1] = weight[2] = 0.f;
ofs[0][0] = ofs[0][1] = ofs[0][2] = ofs[0][3] =
ofs[1][0] = ofs[1][1] = ofs[1][2] = ofs[1][3] =
ofs[2][0] = ofs[2][1] = ofs[2][2] = ofs[2][3] = 0;
}
inline float HaarEvaluator::OptFeature :: calc( const int* ptr ) const
{
float ret = weight[0] * CALC_SUM_OFS(ofs[0], ptr) +
weight[1] * CALC_SUM_OFS(ofs[1], ptr);
if( weight[2] != 0.0f )
ret += weight[2] * CALC_SUM_OFS(ofs[2], ptr);
return ret;
}
//---------------------------------------------- LBPEvaluator -------------------------------------
class LBPEvaluator CV_FINAL : public FeatureEvaluator
{
public:
struct Feature
{
Feature();
Feature( int x, int y, int _block_w, int _block_h ) :
rect(x, y, _block_w, _block_h) {}
bool read(const FileNode& node, const Size& origWinSize);
Rect rect; // weight and height for block
};
struct OptFeature
{
OptFeature();
int calc( const int* pwin ) const;
void setOffsets( const Feature& _f, int step );
int ofs[16];
};
LBPEvaluator();
virtual ~LBPEvaluator() CV_OVERRIDE;
virtual bool read( const FileNode& node, Size origWinSize ) CV_OVERRIDE;
virtual Ptr<FeatureEvaluator> clone() const CV_OVERRIDE;
virtual int getFeatureType() const CV_OVERRIDE { return FeatureEvaluator::LBP; }
virtual bool setWindow(Point p, int scaleIdx) CV_OVERRIDE;
int operator()(int featureIdx) const
{ return optfeaturesPtr[featureIdx].calc(pwin); }
virtual int calcCat(int featureIdx) const CV_OVERRIDE
{ return (*this)(featureIdx); }
protected:
virtual void computeChannels( int i, InputArray img ) CV_OVERRIDE;
virtual void computeOptFeatures() CV_OVERRIDE;
Ptr<std::vector<Feature> > features;
Ptr<std::vector<OptFeature> > optfeatures;
Ptr<std::vector<OptFeature> > optfeatures_lbuf;
OptFeature* optfeaturesPtr; // optimization
const int* pwin;
};
inline LBPEvaluator::Feature :: Feature()
{
rect = Rect();
}
inline LBPEvaluator::OptFeature :: OptFeature()
{
for( int i = 0; i < 16; i++ )
ofs[i] = 0;
}
inline int LBPEvaluator::OptFeature :: calc( const int* p ) const
{
int cval = CALC_SUM_OFS_( ofs[5], ofs[6], ofs[9], ofs[10], p );
return (CALC_SUM_OFS_( ofs[0], ofs[1], ofs[4], ofs[5], p ) >= cval ? 128 : 0) | // 0
(CALC_SUM_OFS_( ofs[1], ofs[2], ofs[5], ofs[6], p ) >= cval ? 64 : 0) | // 1
(CALC_SUM_OFS_( ofs[2], ofs[3], ofs[6], ofs[7], p ) >= cval ? 32 : 0) | // 2
(CALC_SUM_OFS_( ofs[6], ofs[7], ofs[10], ofs[11], p ) >= cval ? 16 : 0) | // 5
(CALC_SUM_OFS_( ofs[10], ofs[11], ofs[14], ofs[15], p ) >= cval ? 8 : 0)| // 8
(CALC_SUM_OFS_( ofs[9], ofs[10], ofs[13], ofs[14], p ) >= cval ? 4 : 0)| // 7
(CALC_SUM_OFS_( ofs[8], ofs[9], ofs[12], ofs[13], p ) >= cval ? 2 : 0)| // 6
(CALC_SUM_OFS_( ofs[4], ofs[5], ofs[8], ofs[9], p ) >= cval ? 1 : 0);
}
//---------------------------------------------- predictor functions -------------------------------------
template<class FEval>
inline int predictOrdered( CascadeClassifierImpl& cascade,
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
CV_INSTRUMENT_REGION();
int nstages = (int)cascade.data.stages.size();
int nodeOfs = 0, leafOfs = 0;
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
float* cascadeLeaves = &cascade.data.leaves[0];
CascadeClassifierImpl::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
CascadeClassifierImpl::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
for( int si = 0; si < nstages; si++ )
{
CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si];
int wi, ntrees = stage.ntrees;
sum = 0;
for( wi = 0; wi < ntrees; wi++ )
{
CascadeClassifierImpl::Data::DTree& weak = cascadeWeaks[stage.first + wi];
int idx = 0, root = nodeOfs;
do
{
CascadeClassifierImpl::Data::DTreeNode& node = cascadeNodes[root + idx];
double val = featureEvaluator(node.featureIdx);
idx = val < node.threshold ? node.left : node.right;
}
while( idx > 0 );
sum += cascadeLeaves[leafOfs - idx];
nodeOfs += weak.nodeCount;
leafOfs += weak.nodeCount + 1;
}
if( sum < stage.threshold )
return -si;
}
return 1;
}
template<class FEval>
inline int predictCategorical( CascadeClassifierImpl& cascade,
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
CV_INSTRUMENT_REGION();
int nstages = (int)cascade.data.stages.size();
int nodeOfs = 0, leafOfs = 0;
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
size_t subsetSize = (cascade.data.ncategories + 31)/32;
int* cascadeSubsets = &cascade.data.subsets[0];
float* cascadeLeaves = &cascade.data.leaves[0];
CascadeClassifierImpl::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
CascadeClassifierImpl::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
for(int si = 0; si < nstages; si++ )
{
CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si];
int wi, ntrees = stage.ntrees;
sum = 0;
for( wi = 0; wi < ntrees; wi++ )
{
CascadeClassifierImpl::Data::DTree& weak = cascadeWeaks[stage.first + wi];
int idx = 0, root = nodeOfs;
do
{
CascadeClassifierImpl::Data::DTreeNode& node = cascadeNodes[root + idx];
int c = featureEvaluator(node.featureIdx);
const int* subset = &cascadeSubsets[(root + idx)*subsetSize];
idx = (subset[c>>5] & (1 << (c & 31))) ? node.left : node.right;
}
while( idx > 0 );
sum += cascadeLeaves[leafOfs - idx];
nodeOfs += weak.nodeCount;
leafOfs += weak.nodeCount + 1;
}
if( sum < stage.threshold )
return -si;
}
return 1;
}
template<class FEval>
inline int predictOrderedStump( CascadeClassifierImpl& cascade,
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
CV_INSTRUMENT_REGION();
CV_Assert(!cascade.data.stumps.empty());
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
const CascadeClassifierImpl::Data::Stump* cascadeStumps = &cascade.data.stumps[0];
const CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
int nstages = (int)cascade.data.stages.size();
double tmp = 0;
for( int stageIdx = 0; stageIdx < nstages; stageIdx++ )
{
const CascadeClassifierImpl::Data::Stage& stage = cascadeStages[stageIdx];
tmp = 0;
int ntrees = stage.ntrees;
for( int i = 0; i < ntrees; i++ )
{
const CascadeClassifierImpl::Data::Stump& stump = cascadeStumps[i];
double value = featureEvaluator(stump.featureIdx);
tmp += value < stump.threshold ? stump.left : stump.right;
}
if( tmp < stage.threshold )
{
sum = (double)tmp;
return -stageIdx;
}
cascadeStumps += ntrees;
}
sum = (double)tmp;
return 1;
}
template<class FEval>
inline int predictCategoricalStump( CascadeClassifierImpl& cascade,
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
CV_INSTRUMENT_REGION();
CV_Assert(!cascade.data.stumps.empty());
int nstages = (int)cascade.data.stages.size();
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
size_t subsetSize = (cascade.data.ncategories + 31)/32;
const int* cascadeSubsets = &cascade.data.subsets[0];
const CascadeClassifierImpl::Data::Stump* cascadeStumps = &cascade.data.stumps[0];
const CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
double tmp = 0;
for( int si = 0; si < nstages; si++ )
{
const CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si];
int wi, ntrees = stage.ntrees;
tmp = 0;
for( wi = 0; wi < ntrees; wi++ )
{
const CascadeClassifierImpl::Data::Stump& stump = cascadeStumps[wi];
int c = featureEvaluator(stump.featureIdx);
const int* subset = &cascadeSubsets[wi*subsetSize];
tmp += (subset[c>>5] & (1 << (c & 31))) ? stump.left : stump.right;
}
if( tmp < stage.threshold )
{
sum = tmp;
return -si;
}
cascadeStumps += ntrees;
cascadeSubsets += ntrees*subsetSize;
}
sum = (double)tmp;
return 1;
}
namespace haar_cvt
{
bool convert(const FileNode& oldcascade_root, FileStorage& newfs);
}
}

View File

@@ -0,0 +1,273 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* Haar features calculation */
#include "precomp.hpp"
#include "cascadedetect.hpp"
#include <stdio.h>
namespace cv
{
/* field names */
#define ICV_HAAR_SIZE_NAME "size"
#define ICV_HAAR_STAGES_NAME "stages"
#define ICV_HAAR_TREES_NAME "trees"
#define ICV_HAAR_FEATURE_NAME "feature"
#define ICV_HAAR_RECTS_NAME "rects"
#define ICV_HAAR_TILTED_NAME "tilted"
#define ICV_HAAR_THRESHOLD_NAME "threshold"
#define ICV_HAAR_LEFT_NODE_NAME "left_node"
#define ICV_HAAR_LEFT_VAL_NAME "left_val"
#define ICV_HAAR_RIGHT_NODE_NAME "right_node"
#define ICV_HAAR_RIGHT_VAL_NAME "right_val"
#define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold"
#define ICV_HAAR_PARENT_NAME "parent"
#define ICV_HAAR_NEXT_NAME "next"
namespace haar_cvt
{
struct HaarFeature
{
enum { RECT_NUM = 3 };
HaarFeature()
{
tilted = false;
for( int i = 0; i < RECT_NUM; i++ )
{
rect[i].r = Rect(0,0,0,0);
rect[i].weight = 0.f;
}
}
bool tilted;
struct
{
Rect r;
float weight;
} rect[RECT_NUM];
};
struct HaarClassifierNode
{
HaarClassifierNode()
{
f = left = right = 0;
threshold = 0.f;
}
int f, left, right;
float threshold;
};
struct HaarClassifier
{
std::vector<HaarClassifierNode> nodes;
std::vector<float> leaves;
};
struct HaarStageClassifier
{
double threshold;
std::vector<HaarClassifier> weaks;
};
bool convert(const FileNode& oldroot, FileStorage& newfs)
{
FileNode sznode = oldroot[ICV_HAAR_SIZE_NAME];
if( sznode.empty() )
return false;
Size cascadesize;
cascadesize.width = (int)sznode[0];
cascadesize.height = (int)sznode[1];
std::vector<HaarFeature> features;
int i, j, k, n;
FileNode stages_seq = oldroot[ICV_HAAR_STAGES_NAME];
int nstages = (int)stages_seq.size();
std::vector<HaarStageClassifier> stages(nstages);
for( i = 0; i < nstages; i++ )
{
FileNode stagenode = stages_seq[i];
HaarStageClassifier& stage = stages[i];
stage.threshold = (double)stagenode[ICV_HAAR_STAGE_THRESHOLD_NAME];
FileNode weaks_seq = stagenode[ICV_HAAR_TREES_NAME];
int nweaks = (int)weaks_seq.size();
stage.weaks.resize(nweaks);
for( j = 0; j < nweaks; j++ )
{
HaarClassifier& weak = stage.weaks[j];
FileNode weaknode = weaks_seq[j];
int nnodes = (int)weaknode.size();
for( n = 0; n < nnodes; n++ )
{
FileNode nnode = weaknode[n];
FileNode fnode = nnode[ICV_HAAR_FEATURE_NAME];
HaarFeature f;
HaarClassifierNode node;
node.f = (int)features.size();
f.tilted = (int)fnode[ICV_HAAR_TILTED_NAME] != 0;
FileNode rects_seq = fnode[ICV_HAAR_RECTS_NAME];
int nrects = (int)rects_seq.size();
for( k = 0; k < nrects; k++ )
{
FileNode rnode = rects_seq[k];
f.rect[k].r.x = (int)rnode[0];
f.rect[k].r.y = (int)rnode[1];
f.rect[k].r.width = (int)rnode[2];
f.rect[k].r.height = (int)rnode[3];
f.rect[k].weight = (float)rnode[4];
}
features.push_back(f);
node.threshold = nnode[ICV_HAAR_THRESHOLD_NAME];
FileNode leftValNode = nnode[ICV_HAAR_LEFT_VAL_NAME];
if( !leftValNode.empty() )
{
node.left = -(int)weak.leaves.size();
weak.leaves.push_back((float)leftValNode);
}
else
{
node.left = (int)nnode[ICV_HAAR_LEFT_NODE_NAME];
}
FileNode rightValNode = nnode[ICV_HAAR_RIGHT_VAL_NAME];
if( !rightValNode.empty() )
{
node.right = -(int)weak.leaves.size();
weak.leaves.push_back((float)rightValNode);
}
else
{
node.right = (int)nnode[ICV_HAAR_RIGHT_NODE_NAME];
}
weak.nodes.push_back(node);
}
}
}
int maxWeakCount = 0, nfeatures = (int)features.size();
for( i = 0; i < nstages; i++ )
maxWeakCount = std::max(maxWeakCount, (int)stages[i].weaks.size());
newfs << "cascade" << "{:opencv-cascade-classifier"
<< "stageType" << "BOOST"
<< "featureType" << "HAAR"
<< "height" << cascadesize.width
<< "width" << cascadesize.height
<< "stageParams" << "{"
<< "maxWeakCount" << (int)maxWeakCount
<< "}"
<< "featureParams" << "{"
<< "maxCatCount" << 0
<< "}"
<< "stageNum" << (int)nstages
<< "stages" << "[";
for( i = 0; i < nstages; i++ )
{
int nweaks = (int)stages[i].weaks.size();
newfs << "{" << "maxWeakCount" << (int)nweaks
<< "stageThreshold" << stages[i].threshold
<< "weakClassifiers" << "[";
for( j = 0; j < nweaks; j++ )
{
const HaarClassifier& c = stages[i].weaks[j];
newfs << "{" << "internalNodes" << "[:";
int nnodes = (int)c.nodes.size(), nleaves = (int)c.leaves.size();
for( k = 0; k < nnodes; k++ )
newfs << c.nodes[k].left << c.nodes[k].right
<< c.nodes[k].f << c.nodes[k].threshold;
newfs << "]" << "leafValues" << "[:";
for( k = 0; k < nleaves; k++ )
newfs << c.leaves[k];
newfs << "]" << "}";
}
newfs << "]" << "}";
}
newfs << "]"
<< "features" << "[";
for( i = 0; i < nfeatures; i++ )
{
const HaarFeature& f = features[i];
newfs << "{" << "rects" << "[";
for( j = 0; j < HaarFeature::RECT_NUM; j++ )
{
if( j >= 2 && fabs(f.rect[j].weight) < FLT_EPSILON )
break;
newfs << "[:" << f.rect[j].r.x << f.rect[j].r.y <<
f.rect[j].r.width << f.rect[j].r.height << f.rect[j].weight << "]";
}
newfs << "]";
if( f.tilted )
newfs << "tilted" << 1;
newfs << "}";
}
newfs << "]" << "}";
return true;
}
}
bool CascadeClassifier::convert(const String& oldcascade, const String& newcascade)
{
FileStorage oldfs(oldcascade, FileStorage::READ);
FileStorage newfs(newcascade, FileStorage::WRITE);
if( !oldfs.isOpened() || !newfs.isOpened() )
return false;
FileNode oldroot = oldfs.getFirstTopLevelNode();
bool ok = haar_cvt::convert(oldroot, newfs);
if( !ok && newcascade.size() > 0 )
remove(newcascade.c_str());
return ok;
}
}

View File

@@ -0,0 +1,885 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/core/utility.hpp"
#include <thread>
#include <mutex>
#include <condition_variable>
#if defined(DEBUG) || defined(_DEBUG)
#undef DEBUGLOGS
#define DEBUGLOGS 1
#endif
#ifndef DEBUGLOGS
#define DEBUGLOGS 0
#endif
#ifdef __ANDROID__
#include <android/log.h>
#define LOG_TAG "OBJECT_DETECTOR"
#define LOGD0(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__))
#define LOGI0(...) ((void)__android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__))
#define LOGW0(...) ((void)__android_log_print(ANDROID_LOG_WARN, LOG_TAG, __VA_ARGS__))
#define LOGE0(...) ((void)__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__))
#else
#include <stdio.h>
#define LOGD0(_str, ...) (printf(_str , ## __VA_ARGS__), printf("\n"), fflush(stdout))
#define LOGI0(_str, ...) (printf(_str , ## __VA_ARGS__), printf("\n"), fflush(stdout))
#define LOGW0(_str, ...) (printf(_str , ## __VA_ARGS__), printf("\n"), fflush(stdout))
#define LOGE0(_str, ...) (printf(_str , ## __VA_ARGS__), printf("\n"), fflush(stdout))
#endif //__ANDROID__
#if DEBUGLOGS
#define LOGD(_str, ...) LOGD0(_str , ## __VA_ARGS__)
#define LOGI(_str, ...) LOGI0(_str , ## __VA_ARGS__)
#define LOGW(_str, ...) LOGW0(_str , ## __VA_ARGS__)
#define LOGE(_str, ...) LOGE0(_str , ## __VA_ARGS__)
#else
#define LOGD(...)
#define LOGI(...)
#define LOGW(...)
#define LOGE(...)
#endif //DEBUGLOGS
using namespace cv;
static inline cv::Point2f centerRect(const cv::Rect& r)
{
return cv::Point2f(r.x+((float)r.width)/2, r.y+((float)r.height)/2);
}
static inline cv::Rect scale_rect(const cv::Rect& r, float scale)
{
cv::Point2f m=centerRect(r);
float width = r.width * scale;
float height = r.height * scale;
int x=cvRound(m.x - width/2);
int y=cvRound(m.y - height/2);
return cv::Rect(x, y, cvRound(width), cvRound(height));
}
namespace cv
{
void* workcycleObjectDetectorFunction(void* p);
}
class cv::DetectionBasedTracker::SeparateDetectionWork
{
public:
SeparateDetectionWork(cv::DetectionBasedTracker& _detectionBasedTracker, cv::Ptr<DetectionBasedTracker::IDetector> _detector,
const cv::DetectionBasedTracker::Parameters& params);
virtual ~SeparateDetectionWork();
bool communicateWithDetectingThread(const Mat& imageGray, std::vector<Rect>& rectsWhereRegions);
bool run();
void stop();
void resetTracking();
inline bool isWorking()
{
return (stateThread==STATE_THREAD_WORKING_SLEEPING) || (stateThread==STATE_THREAD_WORKING_WITH_IMAGE);
}
void setParameters(const cv::DetectionBasedTracker::Parameters& params)
{
std::unique_lock<std::mutex> mtx_lock(mtx);
parameters = params;
}
inline void init()
{
std::unique_lock<std::mutex> mtx_lock(mtx);
stateThread = STATE_THREAD_STOPPED;
isObjectDetectingReady = false;
shouldObjectDetectingResultsBeForgot = false;
objectDetectorThreadStartStop.notify_one();
}
protected:
DetectionBasedTracker& detectionBasedTracker;
cv::Ptr<DetectionBasedTracker::IDetector> cascadeInThread;
std::thread second_workthread;
std::mutex mtx;
std::condition_variable objectDetectorRun;
std::condition_variable objectDetectorThreadStartStop;
std::vector<cv::Rect> resultDetect;
volatile bool isObjectDetectingReady;
volatile bool shouldObjectDetectingResultsBeForgot;
enum StateSeparatedThread {
STATE_THREAD_STOPPED=0,
STATE_THREAD_WORKING_SLEEPING,
STATE_THREAD_WORKING_WITH_IMAGE,
STATE_THREAD_WORKING,
STATE_THREAD_STOPPING
};
volatile StateSeparatedThread stateThread;
cv::Mat imageSeparateDetecting;
void workcycleObjectDetector();
friend void* workcycleObjectDetectorFunction(void* p);
long long timeWhenDetectingThreadStartedWork;
cv::DetectionBasedTracker::Parameters parameters;
};
cv::DetectionBasedTracker::SeparateDetectionWork::SeparateDetectionWork(DetectionBasedTracker& _detectionBasedTracker, cv::Ptr<DetectionBasedTracker::IDetector> _detector,
const cv::DetectionBasedTracker::Parameters& params)
:detectionBasedTracker(_detectionBasedTracker),
cascadeInThread(),
isObjectDetectingReady(false),
shouldObjectDetectingResultsBeForgot(false),
stateThread(STATE_THREAD_STOPPED),
timeWhenDetectingThreadStartedWork(-1),
parameters(params)
{
CV_Assert(_detector);
cascadeInThread = _detector;
}
cv::DetectionBasedTracker::SeparateDetectionWork::~SeparateDetectionWork()
{
if(stateThread!=STATE_THREAD_STOPPED) {
LOGE("\n\n\nATTENTION!!! dangerous algorithm error: destructor DetectionBasedTracker::DetectionBasedTracker::~SeparateDetectionWork is called before stopping the workthread");
}
second_workthread.join();
}
bool cv::DetectionBasedTracker::SeparateDetectionWork::run()
{
LOGD("DetectionBasedTracker::SeparateDetectionWork::run() --- start");
std::unique_lock<std::mutex> mtx_lock(mtx);
// unlocked when leaving scope
if (stateThread != STATE_THREAD_STOPPED) {
LOGE("DetectionBasedTracker::SeparateDetectionWork::run is called while the previous run is not stopped");
return false;
}
stateThread=STATE_THREAD_WORKING_SLEEPING;
second_workthread = std::thread(workcycleObjectDetectorFunction, (void*)this); //TODO: add attributes?
objectDetectorThreadStartStop.wait(mtx_lock);
LOGD("DetectionBasedTracker::SeparateDetectionWork::run --- end");
return true;
}
#define CATCH_ALL_AND_LOG(_block) \
try { \
_block; \
} \
catch(const cv::Exception& e) { \
LOGE0("\n %s: ERROR: OpenCV Exception caught: \n'%s'\n\n", CV_Func, e.what()); \
} catch(const std::exception& e) { \
LOGE0("\n %s: ERROR: Exception caught: \n'%s'\n\n", CV_Func, e.what()); \
} catch(...) { \
LOGE0("\n %s: ERROR: UNKNOWN Exception caught\n\n", CV_Func); \
}
void* cv::workcycleObjectDetectorFunction(void* p)
{
CATCH_ALL_AND_LOG({ ((cv::DetectionBasedTracker::SeparateDetectionWork*)p)->workcycleObjectDetector(); });
try{
((cv::DetectionBasedTracker::SeparateDetectionWork*)p)->init();
} catch(...) {
LOGE0("DetectionBasedTracker: workcycleObjectDetectorFunction: ERROR concerning pointer, received as the function parameter");
}
return NULL;
}
void cv::DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector()
{
static double freq = getTickFrequency();
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- start");
std::vector<Rect> objects;
CV_Assert(stateThread==STATE_THREAD_WORKING_SLEEPING);
std::unique_lock<std::mutex> mtx_lock(mtx);
{
objectDetectorThreadStartStop.notify_one();
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- before waiting");
CV_Assert(stateThread==STATE_THREAD_WORKING_SLEEPING);
objectDetectorRun.wait(mtx_lock);
if (isWorking()) {
stateThread=STATE_THREAD_WORKING_WITH_IMAGE;
}
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- after waiting");
}
mtx_lock.unlock();
bool isFirstStep=true;
isObjectDetectingReady=false;
while(isWorking())
{
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- next step");
if (! isFirstStep) {
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- before waiting");
CV_Assert(stateThread==STATE_THREAD_WORKING_SLEEPING);
mtx_lock.lock();
if (!isWorking()) {//it is a rare case, but may cause a crash
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- go out from the workcycle from inner part of lock just before waiting");
mtx_lock.unlock();
break;
}
CV_Assert(stateThread==STATE_THREAD_WORKING_SLEEPING);
objectDetectorRun.wait(mtx_lock);
if (isWorking()) {
stateThread=STATE_THREAD_WORKING_WITH_IMAGE;
}
mtx_lock.unlock();
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- after waiting");
} else {
isFirstStep=false;
}
if (!isWorking()) {
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- go out from the workcycle just after waiting");
break;
}
if (imageSeparateDetecting.empty()) {
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- imageSeparateDetecting is empty, continue");
continue;
}
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- start handling imageSeparateDetecting, img.size=%dx%d, img.data=0x%p",
imageSeparateDetecting.size().width, imageSeparateDetecting.size().height, (void*)imageSeparateDetecting.data);
int64 t1_detect=getTickCount();
cascadeInThread->detect(imageSeparateDetecting, objects);
/*cascadeInThread.detectMultiScale( imageSeparateDetecting, objects,
detectionBasedTracker.parameters.scaleFactor, detectionBasedTracker.parameters.minNeighbors, 0
|CV_HAAR_SCALE_IMAGE
,
min_objectSize,
max_objectSize
);
*/
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- end handling imageSeparateDetecting");
if (!isWorking()) {
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- go out from the workcycle just after detecting");
break;
}
int64 t2_detect = getTickCount();
int64 dt_detect = t2_detect-t1_detect;
double dt_detect_ms=((double)dt_detect)/freq * 1000.0;
(void)(dt_detect_ms);
LOGI("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- objects num==%d, t_ms=%.4f", (int)objects.size(), dt_detect_ms);
mtx_lock.lock();
if (!shouldObjectDetectingResultsBeForgot) {
resultDetect=objects;
isObjectDetectingReady=true;
} else { //shouldObjectDetectingResultsBeForgot==true
resultDetect.clear();
isObjectDetectingReady=false;
shouldObjectDetectingResultsBeForgot=false;
}
if(isWorking()) {
stateThread=STATE_THREAD_WORKING_SLEEPING;
}
mtx_lock.unlock();
objects.clear();
}// while(isWorking())
LOGI("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector: Returning");
}
void cv::DetectionBasedTracker::SeparateDetectionWork::stop()
{
//FIXME: TODO: should add quickStop functionality
std::unique_lock<std::mutex> mtx_lock(mtx);
if (!isWorking()) {
mtx_lock.unlock();
LOGE("SimpleHighguiDemoCore::stop is called but the SimpleHighguiDemoCore pthread is not active");
stateThread = STATE_THREAD_STOPPING;
return;
}
stateThread=STATE_THREAD_STOPPING;
LOGD("DetectionBasedTracker::SeparateDetectionWork::stop: before going to sleep to wait for the signal from the workthread");
objectDetectorRun.notify_one();
objectDetectorThreadStartStop.wait(mtx_lock);
LOGD("DetectionBasedTracker::SeparateDetectionWork::stop: after receiving the signal from the workthread, stateThread=%d", (int)stateThread);
mtx_lock.unlock();
}
void cv::DetectionBasedTracker::SeparateDetectionWork::resetTracking()
{
LOGD("DetectionBasedTracker::SeparateDetectionWork::resetTracking");
std::unique_lock<std::mutex> mtx_lock(mtx);
if (stateThread == STATE_THREAD_WORKING_WITH_IMAGE) {
LOGD("DetectionBasedTracker::SeparateDetectionWork::resetTracking: since workthread is detecting objects at the moment, we should make cascadeInThread stop detecting and forget the detecting results");
shouldObjectDetectingResultsBeForgot=true;
//cascadeInThread.setStopFlag();//FIXME: TODO: this feature also should be contributed to OpenCV
} else {
LOGD("DetectionBasedTracker::SeparateDetectionWork::resetTracking: since workthread is NOT detecting objects at the moment, we should NOT make any additional actions");
}
resultDetect.clear();
isObjectDetectingReady=false;
mtx_lock.unlock();
}
bool cv::DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingThread(const Mat& imageGray, std::vector<Rect>& rectsWhereRegions)
{
static double freq = getTickFrequency();
bool shouldCommunicateWithDetectingThread = (stateThread==STATE_THREAD_WORKING_SLEEPING);
LOGD("DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingThread: shouldCommunicateWithDetectingThread=%d", (shouldCommunicateWithDetectingThread?1:0));
if (!shouldCommunicateWithDetectingThread) {
return false;
}
bool shouldHandleResult = false;
std::unique_lock<std::mutex> mtx_lock(mtx);
if (isObjectDetectingReady) {
shouldHandleResult=true;
rectsWhereRegions = resultDetect;
isObjectDetectingReady=false;
double lastBigDetectionDuration = 1000.0 * (((double)(getTickCount() - timeWhenDetectingThreadStartedWork )) / freq);
(void)(lastBigDetectionDuration);
LOGD("DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingThread: lastBigDetectionDuration=%f ms", (double)lastBigDetectionDuration);
}
bool shouldSendNewDataToWorkThread = true;
if (timeWhenDetectingThreadStartedWork > 0) {
double time_from_previous_launch_in_ms=1000.0 * (((double)(getTickCount() - timeWhenDetectingThreadStartedWork )) / freq); //the same formula as for lastBigDetectionDuration
shouldSendNewDataToWorkThread = (time_from_previous_launch_in_ms >= detectionBasedTracker.parameters.minDetectionPeriod);
LOGD("DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingThread: shouldSendNewDataToWorkThread was 1, now it is %d, since time_from_previous_launch_in_ms=%.2f, minDetectionPeriod=%d",
(shouldSendNewDataToWorkThread?1:0), time_from_previous_launch_in_ms, detectionBasedTracker.parameters.minDetectionPeriod);
}
if (shouldSendNewDataToWorkThread) {
imageSeparateDetecting.create(imageGray.size(), CV_8UC1);
imageGray.copyTo(imageSeparateDetecting);//may change imageSeparateDetecting ptr. But should not.
timeWhenDetectingThreadStartedWork = getTickCount() ;
objectDetectorRun.notify_one();
}
mtx_lock.unlock();
LOGD("DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingThread: result: shouldHandleResult=%d", (shouldHandleResult?1:0));
return shouldHandleResult;
}
cv::DetectionBasedTracker::Parameters::Parameters()
{
maxTrackLifetime = 5;
minDetectionPeriod = 0;
}
cv::DetectionBasedTracker::InnerParameters::InnerParameters()
{
numLastPositionsToTrack=4;
numStepsToWaitBeforeFirstShow=6;
numStepsToTrackWithoutDetectingIfObjectHasNotBeenShown=3;
numStepsToShowWithoutDetecting=3;
coeffTrackingWindowSize=2.0;
coeffObjectSizeToTrack=0.85f;
coeffObjectSpeedUsingInPrediction=0.8f;
}
cv::DetectionBasedTracker::DetectionBasedTracker(cv::Ptr<IDetector> mainDetector, cv::Ptr<IDetector> trackingDetector, const Parameters& params)
:separateDetectionWork(),
parameters(params),
innerParameters(),
numTrackedSteps(0),
cascadeForTracking(trackingDetector)
{
CV_Assert( (params.maxTrackLifetime >= 0)
// && mainDetector
&& trackingDetector );
if (mainDetector) {
Ptr<SeparateDetectionWork> tmp(new SeparateDetectionWork(*this, mainDetector, params));
separateDetectionWork.swap(tmp);
}
weightsPositionsSmoothing.push_back(1);
weightsSizesSmoothing.push_back(0.5);
weightsSizesSmoothing.push_back(0.3f);
weightsSizesSmoothing.push_back(0.2f);
}
cv::DetectionBasedTracker::~DetectionBasedTracker()
{
}
void DetectionBasedTracker::process(const Mat& imageGray)
{
CV_INSTRUMENT_REGION();
CV_Assert(imageGray.type()==CV_8UC1);
if ( separateDetectionWork && !separateDetectionWork->isWorking() ) {
separateDetectionWork->run();
}
static double freq = getTickFrequency();
static long long time_when_last_call_started=getTickCount();
{
double delta_time_from_prev_call=1000.0 * (((double)(getTickCount() - time_when_last_call_started)) / freq);
(void)(delta_time_from_prev_call);
LOGD("DetectionBasedTracker::process: time from the previous call is %f ms", (double)delta_time_from_prev_call);
time_when_last_call_started=getTickCount();
}
Mat imageDetect=imageGray;
std::vector<Rect> rectsWhereRegions;
bool shouldHandleResult=false;
if (separateDetectionWork) {
shouldHandleResult = separateDetectionWork->communicateWithDetectingThread(imageGray, rectsWhereRegions);
}
if (shouldHandleResult) {
LOGD("DetectionBasedTracker::process: get _rectsWhereRegions were got from resultDetect");
} else {
LOGD("DetectionBasedTracker::process: get _rectsWhereRegions from previous positions");
for(size_t i = 0; i < trackedObjects.size(); i++) {
size_t n = trackedObjects[i].lastPositions.size();
CV_Assert(n > 0);
Rect r = trackedObjects[i].lastPositions[n-1];
if(r.empty()) {
LOGE("DetectionBasedTracker::process: ERROR: ATTENTION: strange algorithm's behavior: trackedObjects[i].rect() is empty");
continue;
}
//correction by speed of rectangle
if (n > 1) {
Point2f center = centerRect(r);
Point2f center_prev = centerRect(trackedObjects[i].lastPositions[n-2]);
Point2f shift = (center - center_prev) * innerParameters.coeffObjectSpeedUsingInPrediction;
r.x += cvRound(shift.x);
r.y += cvRound(shift.y);
}
rectsWhereRegions.push_back(r);
}
}
LOGI("DetectionBasedTracker::process: tracked objects num==%d", (int)trackedObjects.size());
std::vector<Rect> detectedObjectsInRegions;
LOGD("DetectionBasedTracker::process: rectsWhereRegions.size()=%d", (int)rectsWhereRegions.size());
for(size_t i=0; i < rectsWhereRegions.size(); i++) {
Rect r = rectsWhereRegions[i];
detectInRegion(imageDetect, r, detectedObjectsInRegions);
}
LOGD("DetectionBasedTracker::process: detectedObjectsInRegions.size()=%d", (int)detectedObjectsInRegions.size());
updateTrackedObjects(detectedObjectsInRegions);
}
void cv::DetectionBasedTracker::getObjects(std::vector<cv::Rect>& result) const
{
result.clear();
for(size_t i=0; i < trackedObjects.size(); i++) {
Rect r=calcTrackedObjectPositionToShow((int)i);
if (r.empty()) {
continue;
}
result.push_back(r);
LOGD("DetectionBasedTracker::process: found a object with SIZE %d x %d, rect={%d, %d, %d x %d}", r.width, r.height, r.x, r.y, r.width, r.height);
}
}
void cv::DetectionBasedTracker::getObjects(std::vector<Object>& result) const
{
result.clear();
for(size_t i=0; i < trackedObjects.size(); i++) {
Rect r=calcTrackedObjectPositionToShow((int)i);
if (r.empty()) {
continue;
}
result.push_back(Object(r, trackedObjects[i].id));
LOGD("DetectionBasedTracker::process: found a object with SIZE %d x %d, rect={%d, %d, %d x %d}", r.width, r.height, r.x, r.y, r.width, r.height);
}
}
void cv::DetectionBasedTracker::getObjects(std::vector<ExtObject>& result) const
{
result.clear();
for(size_t i=0; i < trackedObjects.size(); i++) {
ObjectStatus status;
Rect r=calcTrackedObjectPositionToShow((int)i, status);
result.push_back(ExtObject(trackedObjects[i].id, r, status));
LOGD("DetectionBasedTracker::process: found a object with SIZE %d x %d, rect={%d, %d, %d x %d}, status = %d", r.width, r.height, r.x, r.y, r.width, r.height, (int)status);
}
}
bool cv::DetectionBasedTracker::run()
{
if (separateDetectionWork) {
return separateDetectionWork->run();
}
return false;
}
void cv::DetectionBasedTracker::stop()
{
if (separateDetectionWork) {
separateDetectionWork->stop();
}
}
void cv::DetectionBasedTracker::resetTracking()
{
if (separateDetectionWork) {
separateDetectionWork->resetTracking();
}
trackedObjects.clear();
}
void cv::DetectionBasedTracker::updateTrackedObjects(const std::vector<Rect>& detectedObjects)
{
enum {
NEW_RECTANGLE=-1,
INTERSECTED_RECTANGLE=-2
};
int N1=(int)trackedObjects.size();
int N2=(int)detectedObjects.size();
LOGD("DetectionBasedTracker::updateTrackedObjects: N1=%d, N2=%d", N1, N2);
for(int i=0; i < N1; i++) {
trackedObjects[i].numDetectedFrames++;
}
std::vector<int> correspondence(detectedObjects.size(), NEW_RECTANGLE);
correspondence.clear();
correspondence.resize(detectedObjects.size(), NEW_RECTANGLE);
for(int i=0; i < N1; i++) {
LOGD("DetectionBasedTracker::updateTrackedObjects: i=%d", i);
TrackedObject& curObject=trackedObjects[i];
int bestIndex=-1;
int bestArea=-1;
int numpositions=(int)curObject.lastPositions.size();
CV_Assert(numpositions > 0);
Rect prevRect=curObject.lastPositions[numpositions-1];
LOGD("DetectionBasedTracker::updateTrackedObjects: prevRect[%d]={%d, %d, %d x %d}", i, prevRect.x, prevRect.y, prevRect.width, prevRect.height);
for(int j=0; j < N2; j++) {
LOGD("DetectionBasedTracker::updateTrackedObjects: j=%d", j);
if (correspondence[j] >= 0) {
LOGD("DetectionBasedTracker::updateTrackedObjects: j=%d is rejected, because it has correspondence=%d", j, correspondence[j]);
continue;
}
if (correspondence[j] !=NEW_RECTANGLE) {
LOGD("DetectionBasedTracker::updateTrackedObjects: j=%d is rejected, because it is intersected with another rectangle", j);
continue;
}
LOGD("DetectionBasedTracker::updateTrackedObjects: detectedObjects[%d]={%d, %d, %d x %d}",
j, detectedObjects[j].x, detectedObjects[j].y, detectedObjects[j].width, detectedObjects[j].height);
Rect r=prevRect & detectedObjects[j];
if ( (r.width > 0) && (r.height > 0) ) {
LOGD("DetectionBasedTracker::updateTrackedObjects: There is intersection between prevRect and detectedRect, r={%d, %d, %d x %d}",
r.x, r.y, r.width, r.height);
correspondence[j]=INTERSECTED_RECTANGLE;
if ( r.area() > bestArea) {
LOGD("DetectionBasedTracker::updateTrackedObjects: The area of intersection is %d, it is better than bestArea=%d", r.area(), bestArea);
bestIndex=j;
bestArea=r.area();
}
}
}
if (bestIndex >= 0) {
LOGD("DetectionBasedTracker::updateTrackedObjects: The best correspondence for i=%d is j=%d", i, bestIndex);
correspondence[bestIndex]=i;
for(int j=0; j < N2; j++) {
if (correspondence[j] >= 0)
continue;
Rect r=detectedObjects[j] & detectedObjects[bestIndex];
if ( (r.width > 0) && (r.height > 0) ) {
LOGD("DetectionBasedTracker::updateTrackedObjects: Found intersection between "
"rectangles j=%d and bestIndex=%d, rectangle j=%d is marked as intersected", j, bestIndex, j);
correspondence[j]=INTERSECTED_RECTANGLE;
}
}
} else {
LOGD("DetectionBasedTracker::updateTrackedObjects: There is no correspondence for i=%d ", i);
curObject.numFramesNotDetected++;
}
}
LOGD("DetectionBasedTracker::updateTrackedObjects: start second cycle");
for(int j=0; j < N2; j++) {
LOGD("DetectionBasedTracker::updateTrackedObjects: j=%d", j);
int i=correspondence[j];
if (i >= 0) {//add position
LOGD("DetectionBasedTracker::updateTrackedObjects: add position");
trackedObjects[i].lastPositions.push_back(detectedObjects[j]);
while ((int)trackedObjects[i].lastPositions.size() > (int) innerParameters.numLastPositionsToTrack) {
trackedObjects[i].lastPositions.erase(trackedObjects[i].lastPositions.begin());
}
trackedObjects[i].numFramesNotDetected=0;
} else if (i==NEW_RECTANGLE){ //new object
LOGD("DetectionBasedTracker::updateTrackedObjects: new object");
trackedObjects.push_back(detectedObjects[j]);
} else {
LOGD("DetectionBasedTracker::updateTrackedObjects: was auxiliary intersection");
}
}
std::vector<TrackedObject>::iterator it=trackedObjects.begin();
while( it != trackedObjects.end() ) {
if ( (it->numFramesNotDetected > parameters.maxTrackLifetime)
||
(
(it->numDetectedFrames <= innerParameters.numStepsToWaitBeforeFirstShow)
&&
(it->numFramesNotDetected > innerParameters.numStepsToTrackWithoutDetectingIfObjectHasNotBeenShown)
)
)
{
int numpos=(int)it->lastPositions.size();
CV_Assert(numpos > 0);
Rect r = it->lastPositions[numpos-1];
(void)(r);
LOGD("DetectionBasedTracker::updateTrackedObjects: deleted object {%d, %d, %d x %d}",
r.x, r.y, r.width, r.height);
it=trackedObjects.erase(it);
} else {
it++;
}
}
}
int cv::DetectionBasedTracker::addObject(const Rect& location)
{
LOGD("DetectionBasedTracker::addObject: new object {%d, %d %dx%d}",location.x, location.y, location.width, location.height);
trackedObjects.push_back(TrackedObject(location));
int newId = trackedObjects.back().id;
LOGD("DetectionBasedTracker::addObject: newId = %d", newId);
return newId;
}
Rect cv::DetectionBasedTracker::calcTrackedObjectPositionToShow(int i) const
{
ObjectStatus status;
return calcTrackedObjectPositionToShow(i, status);
}
Rect cv::DetectionBasedTracker::calcTrackedObjectPositionToShow(int i, ObjectStatus& status) const
{
if ( (i < 0) || (i >= (int)trackedObjects.size()) ) {
LOGE("DetectionBasedTracker::calcTrackedObjectPositionToShow: ERROR: wrong i=%d", i);
status = WRONG_OBJECT;
return Rect();
}
if (trackedObjects[i].numDetectedFrames <= innerParameters.numStepsToWaitBeforeFirstShow){
LOGI("DetectionBasedTracker::calcTrackedObjectPositionToShow: trackedObjects[%d].numDetectedFrames=%d <= numStepsToWaitBeforeFirstShow=%d --- return empty Rect()",
i, trackedObjects[i].numDetectedFrames, innerParameters.numStepsToWaitBeforeFirstShow);
status = DETECTED_NOT_SHOWN_YET;
return Rect();
}
if (trackedObjects[i].numFramesNotDetected > innerParameters.numStepsToShowWithoutDetecting) {
status = DETECTED_TEMPORARY_LOST;
return Rect();
}
const TrackedObject::PositionsVector& lastPositions=trackedObjects[i].lastPositions;
int N=(int)lastPositions.size();
if (N<=0) {
LOGE("DetectionBasedTracker::calcTrackedObjectPositionToShow: ERROR: no positions for i=%d", i);
status = WRONG_OBJECT;
return Rect();
}
int Nsize=std::min(N, (int)weightsSizesSmoothing.size());
int Ncenter= std::min(N, (int)weightsPositionsSmoothing.size());
Point2f center;
double w=0, h=0;
if (Nsize > 0) {
double sum=0;
for(int j=0; j < Nsize; j++) {
int k=N-j-1;
w += lastPositions[k].width * weightsSizesSmoothing[j];
h += lastPositions[k].height * weightsSizesSmoothing[j];
sum+=weightsSizesSmoothing[j];
}
w /= sum;
h /= sum;
} else {
w=lastPositions[N-1].width;
h=lastPositions[N-1].height;
}
if (Ncenter > 0) {
double sum=0;
for(int j=0; j < Ncenter; j++) {
int k=N-j-1;
Point tl(lastPositions[k].tl());
Point br(lastPositions[k].br());
Point2f c1;
c1=tl;
c1=c1* 0.5f;
Point2f c2;
c2=br;
c2=c2*0.5f;
c1=c1+c2;
center=center+ (c1 * weightsPositionsSmoothing[j]);
sum+=weightsPositionsSmoothing[j];
}
center *= (float)(1 / sum);
} else {
int k=N-1;
Point tl(lastPositions[k].tl());
Point br(lastPositions[k].br());
Point2f c1;
c1=tl;
c1=c1* 0.5f;
Point2f c2;
c2=br;
c2=c2*0.5f;
center=c1+c2;
}
Point2f tl=center-Point2f((float)w*0.5f,(float)h*0.5f);
Rect res(cvRound(tl.x), cvRound(tl.y), cvRound(w), cvRound(h));
LOGD("DetectionBasedTracker::calcTrackedObjectPositionToShow: Result for i=%d: {%d, %d, %d x %d}", i, res.x, res.y, res.width, res.height);
status = DETECTED;
return res;
}
void cv::DetectionBasedTracker::detectInRegion(const Mat& img, const Rect& r, std::vector<Rect>& detectedObjectsInRegions)
{
Rect r0(Point(), img.size());
Rect r1 = scale_rect(r, innerParameters.coeffTrackingWindowSize);
r1 = r1 & r0;
if ( (r1.width <=0) || (r1.height <= 0) ) {
LOGD("DetectionBasedTracker::detectInRegion: Empty intersection");
return;
}
int d = cvRound(std::min(r.width, r.height) * innerParameters.coeffObjectSizeToTrack);
std::vector<Rect> tmpobjects;
Mat img1(img, r1);//subimage for rectangle -- without data copying
LOGD("DetectionBasedTracker::detectInRegion: img1.size()=%d x %d, d=%d",
img1.size().width, img1.size().height, d);
cascadeForTracking->setMinObjectSize(Size(d, d));
cascadeForTracking->detect(img1, tmpobjects);
/*
detectMultiScale( img1, tmpobjects,
parameters.scaleFactor, parameters.minNeighbors, 0
|CV_HAAR_FIND_BIGGEST_OBJECT
|CV_HAAR_SCALE_IMAGE
,
Size(d,d),
max_objectSize
);*/
for(size_t i=0; i < tmpobjects.size(); i++) {
Rect curres(tmpobjects[i].tl() + r1.tl(), tmpobjects[i].size());
detectedObjectsInRegions.push_back(curres);
}
}
bool cv::DetectionBasedTracker::setParameters(const Parameters& params)
{
if ( params.maxTrackLifetime < 0 )
{
LOGE("DetectionBasedTracker::setParameters: ERROR: wrong parameters value");
return false;
}
if (separateDetectionWork) {
separateDetectionWork->setParameters(params);
}
parameters=params;
return true;
}
const cv::DetectionBasedTracker::Parameters& DetectionBasedTracker::getParameters() const
{
return parameters;
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,52 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
//
// Library initialization file
//
#include "precomp.hpp"
IPP_INITIALIZER_AUTO
/* End of file. */

View File

@@ -0,0 +1,661 @@
///////////////////////////// OpenCL kernels for face detection //////////////////////////////
////////////////////////////// see the opencv/doc/license.txt ///////////////////////////////
//
// the code has been derived from the OpenCL Haar cascade kernel by
//
// Niko Li, newlife20080214@gmail.com
// Wang Weiyan, wangweiyanster@gmail.com
// Jia Haipeng, jiahaipeng95@gmail.com
// Nathan, liujun@multicorewareinc.com
// Peng Xiao, pengxiao@outlook.com
// Erping Pang, erping@multicorewareinc.com
//
#ifdef HAAR
typedef struct __attribute__((aligned(4))) OptHaarFeature
{
int4 ofs[3] __attribute__((aligned (4)));
float4 weight __attribute__((aligned (4)));
}
OptHaarFeature;
#endif
#ifdef LBP
typedef struct __attribute__((aligned(4))) OptLBPFeature
{
int16 ofs __attribute__((aligned (4)));
}
OptLBPFeature;
#endif
typedef struct __attribute__((aligned(4))) Stump
{
float4 st __attribute__((aligned (4)));
}
Stump;
typedef struct __attribute__((aligned(4))) Node
{
int4 n __attribute__((aligned (4)));
}
Node;
typedef struct __attribute__((aligned (4))) Stage
{
int first __attribute__((aligned (4)));
int ntrees __attribute__((aligned (4)));
float threshold __attribute__((aligned (4)));
}
Stage;
typedef struct __attribute__((aligned (4))) ScaleData
{
float scale __attribute__((aligned (4)));
int szi_width __attribute__((aligned (4)));
int szi_height __attribute__((aligned (4)));
int layer_ofs __attribute__((aligned (4)));
int ystep __attribute__((aligned (4)));
}
ScaleData;
#ifndef SUM_BUF_SIZE
#define SUM_BUF_SIZE 0
#endif
#ifndef NODE_COUNT
#define NODE_COUNT 1
#endif
#ifdef HAAR
__kernel __attribute__((reqd_work_group_size(LOCAL_SIZE_X,LOCAL_SIZE_Y,1)))
void runHaarClassifier(
int nscales, __global const ScaleData* scaleData,
__global const int* sum,
int _sumstep, int sumoffset,
__global const OptHaarFeature* optfeatures,
__global const Stage* stages,
__global const Node* nodes,
__global const float* leaves0,
volatile __global int* facepos,
int4 normrect, int sqofs, int2 windowsize)
{
int lx = get_local_id(0);
int ly = get_local_id(1);
int groupIdx = get_group_id(0);
int i, ngroups = get_global_size(0)/LOCAL_SIZE_X;
int scaleIdx, tileIdx, stageIdx;
int sumstep = (int)(_sumstep/sizeof(int));
int4 nofs0 = (int4)(mad24(normrect.y, sumstep, normrect.x),
mad24(normrect.y, sumstep, normrect.x + normrect.z),
mad24(normrect.y + normrect.w, sumstep, normrect.x),
mad24(normrect.y + normrect.w, sumstep, normrect.x + normrect.z));
int normarea = normrect.z * normrect.w;
float invarea = 1.f/normarea;
int lidx = ly*LOCAL_SIZE_X + lx;
#if SUM_BUF_SIZE > 0
int4 nofs = (int4)(mad24(normrect.y, SUM_BUF_STEP, normrect.x),
mad24(normrect.y, SUM_BUF_STEP, normrect.x + normrect.z),
mad24(normrect.y + normrect.w, SUM_BUF_STEP, normrect.x),
mad24(normrect.y + normrect.w, SUM_BUF_STEP, normrect.x + normrect.z));
#else
int4 nofs = nofs0;
#endif
#define LOCAL_SIZE (LOCAL_SIZE_X*LOCAL_SIZE_Y)
__local int lstore[SUM_BUF_SIZE + LOCAL_SIZE*5/2+1];
#if SUM_BUF_SIZE > 0
__local int* ibuf = lstore;
__local int* lcount = ibuf + SUM_BUF_SIZE;
#else
__local int* lcount = lstore;
#endif
__local float* lnf = (__local float*)(lcount + 1);
__local float* lpartsum = lnf + LOCAL_SIZE;
__local short* lbuf = (__local short*)(lpartsum + LOCAL_SIZE);
for( scaleIdx = nscales-1; scaleIdx >= 0; scaleIdx-- )
{
__global const ScaleData* s = scaleData + scaleIdx;
int ystep = s->ystep;
int2 worksize = (int2)(max(s->szi_width - windowsize.x, 0), max(s->szi_height - windowsize.y, 0));
int2 ntiles = (int2)((worksize.x + LOCAL_SIZE_X-1)/LOCAL_SIZE_X,
(worksize.y + LOCAL_SIZE_Y-1)/LOCAL_SIZE_Y);
int totalTiles = ntiles.x*ntiles.y;
for( tileIdx = groupIdx; tileIdx < totalTiles; tileIdx += ngroups )
{
int ix0 = (tileIdx % ntiles.x)*LOCAL_SIZE_X;
int iy0 = (tileIdx / ntiles.x)*LOCAL_SIZE_Y;
int ix = lx, iy = ly;
__global const int* psum0 = sum + mad24(iy0, sumstep, ix0) + s->layer_ofs;
__global const int* psum1 = psum0 + mad24(iy, sumstep, ix);
if( ix0 >= worksize.x || iy0 >= worksize.y )
continue;
#if SUM_BUF_SIZE > 0
for( i = lidx*4; i < SUM_BUF_SIZE; i += LOCAL_SIZE_X*LOCAL_SIZE_Y*4 )
{
int dy = i/SUM_BUF_STEP, dx = i - dy*SUM_BUF_STEP;
vstore4(vload4(0, psum0 + mad24(dy, sumstep, dx)), 0, ibuf+i);
}
#endif
if( lidx == 0 )
lcount[0] = 0;
barrier(CLK_LOCAL_MEM_FENCE);
if( ix0 + ix < worksize.x && iy0 + iy < worksize.y )
{
#if NODE_COUNT==1
__global const Stump* stump = (__global const Stump*)nodes;
#else
__global const Node* node = nodes;
__global const float* leaves = leaves0;
#endif
#if SUM_BUF_SIZE > 0
__local const int* psum = ibuf + mad24(iy, SUM_BUF_STEP, ix);
#else
__global const int* psum = psum1;
#endif
__global const int* psqsum = (__global const int*)(psum1 + sqofs);
float sval = (psum[nofs.x] - psum[nofs.y] - psum[nofs.z] + psum[nofs.w])*invarea;
float sqval = (psqsum[nofs0.x] - psqsum[nofs0.y] - psqsum[nofs0.z] + psqsum[nofs0.w])*invarea;
float nf = (float)normarea * sqrt(max(sqval - sval * sval, 0.f));
nf = nf > 0 ? nf : 1.f;
for( stageIdx = 0; stageIdx < SPLIT_STAGE; stageIdx++ )
{
int ntrees = stages[stageIdx].ntrees;
float s = 0.f;
#if NODE_COUNT==1
for( i = 0; i < ntrees; i++ )
{
float4 st = stump[i].st;
__global const OptHaarFeature* f = optfeatures + as_int(st.x);
float4 weight = f->weight;
int4 ofs = f->ofs[0];
sval = (psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w])*weight.x;
ofs = f->ofs[1];
sval = mad((float)(psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w]), weight.y, sval);
if( weight.z > 0 )
{
ofs = f->ofs[2];
sval = mad((float)(psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w]), weight.z, sval);
}
s += (sval < st.y*nf) ? st.z : st.w;
}
stump += ntrees;
#else
for( i = 0; i < ntrees; i++, node += NODE_COUNT, leaves += NODE_COUNT+1 )
{
int idx = 0;
do
{
int4 n = node[idx].n;
__global const OptHaarFeature* f = optfeatures + n.x;
float4 weight = f->weight;
int4 ofs = f->ofs[0];
sval = (psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w])*weight.x;
ofs = f->ofs[1];
sval = mad((float)(psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w]), weight.y, sval);
if( weight.z > 0 )
{
ofs = f->ofs[2];
sval = mad((float)(psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w]), weight.z, sval);
}
idx = (sval < as_float(n.y)*nf) ? n.z : n.w;
}
while(idx > 0);
s += leaves[-idx];
}
#endif
if( s < stages[stageIdx].threshold )
break;
}
if( stageIdx == SPLIT_STAGE && (ystep == 1 || ((ix | iy) & 1) == 0) )
{
int count = atomic_inc(lcount);
lbuf[count] = (int)(ix | (iy << 8));
lnf[count] = nf;
}
}
for( stageIdx = SPLIT_STAGE; stageIdx < N_STAGES; stageIdx++ )
{
barrier(CLK_LOCAL_MEM_FENCE);
int nrects = lcount[0];
if( nrects == 0 )
break;
barrier(CLK_LOCAL_MEM_FENCE);
if( lidx == 0 )
lcount[0] = 0;
{
#if NODE_COUNT == 1
__global const Stump* stump = (__global const Stump*)nodes + stages[stageIdx].first;
#else
__global const Node* node = nodes + stages[stageIdx].first*NODE_COUNT;
__global const float* leaves = leaves0 + stages[stageIdx].first*(NODE_COUNT+1);
#endif
int nparts = LOCAL_SIZE / nrects;
int ntrees = stages[stageIdx].ntrees;
int ntrees_p = (ntrees + nparts - 1)/nparts;
int nr = lidx / nparts;
int partidx = -1, idxval = 0;
float partsum = 0.f, nf = 0.f;
if( nr < nrects )
{
partidx = lidx % nparts;
idxval = lbuf[nr];
nf = lnf[nr];
{
int ntrees0 = ntrees_p*partidx;
int ntrees1 = min(ntrees0 + ntrees_p, ntrees);
int ix1 = idxval & 255, iy1 = idxval >> 8;
#if SUM_BUF_SIZE > 0
__local const int* psum = ibuf + mad24(iy1, SUM_BUF_STEP, ix1);
#else
__global const int* psum = psum0 + mad24(iy1, sumstep, ix1);
#endif
#if NODE_COUNT == 1
for( i = ntrees0; i < ntrees1; i++ )
{
float4 st = stump[i].st;
__global const OptHaarFeature* f = optfeatures + as_int(st.x);
float4 weight = f->weight;
int4 ofs = f->ofs[0];
float sval = (psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w])*weight.x;
ofs = f->ofs[1];
sval = mad((float)(psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w]), weight.y, sval);
//if( weight.z > 0 )
if( fabs(weight.z) > 0 )
{
ofs = f->ofs[2];
sval = mad((float)(psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w]), weight.z, sval);
}
partsum += (sval < st.y*nf) ? st.z : st.w;
}
#else
for( i = ntrees0; i < ntrees1; i++ )
{
int idx = 0;
do
{
int4 n = node[i*2 + idx].n;
__global const OptHaarFeature* f = optfeatures + n.x;
float4 weight = f->weight;
int4 ofs = f->ofs[0];
float sval = (psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w])*weight.x;
ofs = f->ofs[1];
sval = mad((float)(psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w]), weight.y, sval);
if( weight.z > 0 )
{
ofs = f->ofs[2];
sval = mad((float)(psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w]), weight.z, sval);
}
idx = (sval < as_float(n.y)*nf) ? n.z : n.w;
}
while(idx > 0);
partsum += leaves[i*3-idx];
}
#endif
}
}
lpartsum[lidx] = partsum;
barrier(CLK_LOCAL_MEM_FENCE);
if( partidx == 0 )
{
float s = lpartsum[nr*nparts];
for( i = 1; i < nparts; i++ )
s += lpartsum[i + nr*nparts];
if( s >= stages[stageIdx].threshold )
{
int count = atomic_inc(lcount);
lbuf[count] = idxval;
lnf[count] = nf;
}
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if( stageIdx == N_STAGES )
{
int nrects = lcount[0];
if( lidx < nrects )
{
int nfaces = atomic_inc(facepos);
if( nfaces < MAX_FACES )
{
volatile __global int* face = facepos + 1 + nfaces*3;
int val = lbuf[lidx];
face[0] = scaleIdx;
face[1] = ix0 + (val & 255);
face[2] = iy0 + (val >> 8);
}
}
}
}
}
}
#endif
#ifdef LBP
#undef CALC_SUM_OFS_
#define CALC_SUM_OFS_(p0, p1, p2, p3, ptr) \
((ptr)[p0] - (ptr)[p1] - (ptr)[p2] + (ptr)[p3])
__kernel void runLBPClassifierStumpSimple(
int nscales, __global const ScaleData* scaleData,
__global const int* sum,
int _sumstep, int sumoffset,
__global const OptLBPFeature* optfeatures,
__global const Stage* stages,
__global const Stump* stumps,
__global const int* bitsets,
int bitsetSize,
volatile __global int* facepos,
int2 windowsize)
{
int lx = get_local_id(0);
int ly = get_local_id(1);
int local_size_x = get_local_size(0);
int local_size_y = get_local_size(1);
int groupIdx = get_group_id(1)*get_num_groups(0) + get_group_id(0);
int ngroups = get_num_groups(0)*get_num_groups(1);
int scaleIdx, tileIdx, stageIdx;
int sumstep = (int)(_sumstep/sizeof(int));
for( scaleIdx = nscales-1; scaleIdx >= 0; scaleIdx-- )
{
__global const ScaleData* s = scaleData + scaleIdx;
int ystep = s->ystep;
int2 worksize = (int2)(max(s->szi_width - windowsize.x, 0), max(s->szi_height - windowsize.y, 0));
int2 ntiles = (int2)((worksize.x/ystep + local_size_x-1)/local_size_x,
(worksize.y/ystep + local_size_y-1)/local_size_y);
int totalTiles = ntiles.x*ntiles.y;
for( tileIdx = groupIdx; tileIdx < totalTiles; tileIdx += ngroups )
{
int iy = mad24((tileIdx / ntiles.x), local_size_y, ly) * ystep;
int ix = mad24((tileIdx % ntiles.x), local_size_x, lx) * ystep;
if( ix < worksize.x && iy < worksize.y )
{
__global const int* p = sum + mad24(iy, sumstep, ix) + s->layer_ofs;
__global const Stump* stump = stumps;
__global const int* bitset = bitsets;
for( stageIdx = 0; stageIdx < N_STAGES; stageIdx++ )
{
int i, ntrees = stages[stageIdx].ntrees;
float s = 0.f;
for( i = 0; i < ntrees; i++, stump++, bitset += bitsetSize )
{
float4 st = stump->st;
__global const OptLBPFeature* f = optfeatures + as_int(st.x);
int16 ofs = f->ofs;
int cval = CALC_SUM_OFS_( ofs.s5, ofs.s6, ofs.s9, ofs.sa, p );
int mask, idx = (CALC_SUM_OFS_( ofs.s0, ofs.s1, ofs.s4, ofs.s5, p ) >= cval ? 4 : 0); // 0
idx |= (CALC_SUM_OFS_( ofs.s1, ofs.s2, ofs.s5, ofs.s6, p ) >= cval ? 2 : 0); // 1
idx |= (CALC_SUM_OFS_( ofs.s2, ofs.s3, ofs.s6, ofs.s7, p ) >= cval ? 1 : 0); // 2
mask = (CALC_SUM_OFS_( ofs.s6, ofs.s7, ofs.sa, ofs.sb, p ) >= cval ? 16 : 0); // 5
mask |= (CALC_SUM_OFS_( ofs.sa, ofs.sb, ofs.se, ofs.sf, p ) >= cval ? 8 : 0); // 8
mask |= (CALC_SUM_OFS_( ofs.s9, ofs.sa, ofs.sd, ofs.se, p ) >= cval ? 4 : 0); // 7
mask |= (CALC_SUM_OFS_( ofs.s8, ofs.s9, ofs.sc, ofs.sd, p ) >= cval ? 2 : 0); // 6
mask |= (CALC_SUM_OFS_( ofs.s4, ofs.s5, ofs.s8, ofs.s9, p ) >= cval ? 1 : 0); // 7
s += (bitset[idx] & (1 << mask)) ? st.z : st.w;
}
if( s < stages[stageIdx].threshold )
break;
}
if( stageIdx == N_STAGES )
{
int nfaces = atomic_inc(facepos);
if( nfaces < MAX_FACES )
{
volatile __global int* face = facepos + 1 + nfaces*3;
face[0] = scaleIdx;
face[1] = ix;
face[2] = iy;
}
}
}
}
}
}
__kernel __attribute__((reqd_work_group_size(LOCAL_SIZE_X,LOCAL_SIZE_Y,1)))
void runLBPClassifierStump(
int nscales, __global const ScaleData* scaleData,
__global const int* sum,
int _sumstep, int sumoffset,
__global const OptLBPFeature* optfeatures,
__global const Stage* stages,
__global const Stump* stumps,
__global const int* bitsets,
int bitsetSize,
volatile __global int* facepos,
int2 windowsize)
{
int lx = get_local_id(0);
int ly = get_local_id(1);
int groupIdx = get_group_id(0);
int i, ngroups = get_global_size(0)/LOCAL_SIZE_X;
int scaleIdx, tileIdx, stageIdx;
int sumstep = (int)(_sumstep/sizeof(int));
int lidx = ly*LOCAL_SIZE_X + lx;
#define LOCAL_SIZE (LOCAL_SIZE_X*LOCAL_SIZE_Y)
__local int lstore[SUM_BUF_SIZE + LOCAL_SIZE*3/2+1];
#if SUM_BUF_SIZE > 0
__local int* ibuf = lstore;
__local int* lcount = ibuf + SUM_BUF_SIZE;
#else
__local int* lcount = lstore;
#endif
__local float* lpartsum = (__local float*)(lcount + 1);
__local short* lbuf = (__local short*)(lpartsum + LOCAL_SIZE);
for( scaleIdx = nscales-1; scaleIdx >= 0; scaleIdx-- )
{
__global const ScaleData* s = scaleData + scaleIdx;
int ystep = s->ystep;
int2 worksize = (int2)(max(s->szi_width - windowsize.x, 0), max(s->szi_height - windowsize.y, 0));
int2 ntiles = (int2)((worksize.x + LOCAL_SIZE_X-1)/LOCAL_SIZE_X,
(worksize.y + LOCAL_SIZE_Y-1)/LOCAL_SIZE_Y);
int totalTiles = ntiles.x*ntiles.y;
for( tileIdx = groupIdx; tileIdx < totalTiles; tileIdx += ngroups )
{
int ix0 = (tileIdx % ntiles.x)*LOCAL_SIZE_X;
int iy0 = (tileIdx / ntiles.x)*LOCAL_SIZE_Y;
int ix = lx, iy = ly;
__global const int* psum0 = sum + mad24(iy0, sumstep, ix0) + s->layer_ofs;
if( ix0 >= worksize.x || iy0 >= worksize.y )
continue;
#if SUM_BUF_SIZE > 0
for( i = lidx*4; i < SUM_BUF_SIZE; i += LOCAL_SIZE_X*LOCAL_SIZE_Y*4 )
{
int dy = i/SUM_BUF_STEP, dx = i - dy*SUM_BUF_STEP;
vstore4(vload4(0, psum0 + mad24(dy, sumstep, dx)), 0, ibuf+i);
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if( lidx == 0 )
lcount[0] = 0;
barrier(CLK_LOCAL_MEM_FENCE);
if( ix0 + ix < worksize.x && iy0 + iy < worksize.y )
{
__global const Stump* stump = stumps;
__global const int* bitset = bitsets;
#if SUM_BUF_SIZE > 0
__local const int* p = ibuf + mad24(iy, SUM_BUF_STEP, ix);
#else
__global const int* p = psum0 + mad24(iy, sumstep, ix);
#endif
for( stageIdx = 0; stageIdx < SPLIT_STAGE; stageIdx++ )
{
int ntrees = stages[stageIdx].ntrees;
float s = 0.f;
for( i = 0; i < ntrees; i++, stump++, bitset += bitsetSize )
{
float4 st = stump->st;
__global const OptLBPFeature* f = optfeatures + as_int(st.x);
int16 ofs = f->ofs;
int cval = CALC_SUM_OFS_( ofs.s5, ofs.s6, ofs.s9, ofs.sa, p );
int mask, idx = (CALC_SUM_OFS_( ofs.s0, ofs.s1, ofs.s4, ofs.s5, p ) >= cval ? 4 : 0); // 0
idx |= (CALC_SUM_OFS_( ofs.s1, ofs.s2, ofs.s5, ofs.s6, p ) >= cval ? 2 : 0); // 1
idx |= (CALC_SUM_OFS_( ofs.s2, ofs.s3, ofs.s6, ofs.s7, p ) >= cval ? 1 : 0); // 2
mask = (CALC_SUM_OFS_( ofs.s6, ofs.s7, ofs.sa, ofs.sb, p ) >= cval ? 16 : 0); // 5
mask |= (CALC_SUM_OFS_( ofs.sa, ofs.sb, ofs.se, ofs.sf, p ) >= cval ? 8 : 0); // 8
mask |= (CALC_SUM_OFS_( ofs.s9, ofs.sa, ofs.sd, ofs.se, p ) >= cval ? 4 : 0); // 7
mask |= (CALC_SUM_OFS_( ofs.s8, ofs.s9, ofs.sc, ofs.sd, p ) >= cval ? 2 : 0); // 6
mask |= (CALC_SUM_OFS_( ofs.s4, ofs.s5, ofs.s8, ofs.s9, p ) >= cval ? 1 : 0); // 7
s += (bitset[idx] & (1 << mask)) ? st.z : st.w;
}
if( s < stages[stageIdx].threshold )
break;
}
if( stageIdx == SPLIT_STAGE && (ystep == 1 || ((ix | iy) & 1) == 0) )
{
int count = atomic_inc(lcount);
lbuf[count] = (int)(ix | (iy << 8));
}
}
for( stageIdx = SPLIT_STAGE; stageIdx < N_STAGES; stageIdx++ )
{
int nrects = lcount[0];
barrier(CLK_LOCAL_MEM_FENCE);
if( nrects == 0 )
break;
if( lidx == 0 )
lcount[0] = 0;
{
__global const Stump* stump = stumps + stages[stageIdx].first;
__global const int* bitset = bitsets + stages[stageIdx].first*bitsetSize;
int nparts = LOCAL_SIZE / nrects;
int ntrees = stages[stageIdx].ntrees;
int ntrees_p = (ntrees + nparts - 1)/nparts;
int nr = lidx / nparts;
int partidx = -1, idxval = 0;
float partsum = 0.f, nf = 0.f;
if( nr < nrects )
{
partidx = lidx % nparts;
idxval = lbuf[nr];
{
int ntrees0 = ntrees_p*partidx;
int ntrees1 = min(ntrees0 + ntrees_p, ntrees);
int ix1 = idxval & 255, iy1 = idxval >> 8;
#if SUM_BUF_SIZE > 0
__local const int* p = ibuf + mad24(iy1, SUM_BUF_STEP, ix1);
#else
__global const int* p = psum0 + mad24(iy1, sumstep, ix1);
#endif
for( i = ntrees0; i < ntrees1; i++ )
{
float4 st = stump[i].st;
__global const OptLBPFeature* f = optfeatures + as_int(st.x);
int16 ofs = f->ofs;
#define CALC_SUM_OFS_(p0, p1, p2, p3, ptr) \
((ptr)[p0] - (ptr)[p1] - (ptr)[p2] + (ptr)[p3])
int cval = CALC_SUM_OFS_( ofs.s5, ofs.s6, ofs.s9, ofs.sa, p );
int mask, idx = (CALC_SUM_OFS_( ofs.s0, ofs.s1, ofs.s4, ofs.s5, p ) >= cval ? 4 : 0); // 0
idx |= (CALC_SUM_OFS_( ofs.s1, ofs.s2, ofs.s5, ofs.s6, p ) >= cval ? 2 : 0); // 1
idx |= (CALC_SUM_OFS_( ofs.s2, ofs.s3, ofs.s6, ofs.s7, p ) >= cval ? 1 : 0); // 2
mask = (CALC_SUM_OFS_( ofs.s6, ofs.s7, ofs.sa, ofs.sb, p ) >= cval ? 16 : 0); // 5
mask |= (CALC_SUM_OFS_( ofs.sa, ofs.sb, ofs.se, ofs.sf, p ) >= cval ? 8 : 0); // 8
mask |= (CALC_SUM_OFS_( ofs.s9, ofs.sa, ofs.sd, ofs.se, p ) >= cval ? 4 : 0); // 7
mask |= (CALC_SUM_OFS_( ofs.s8, ofs.s9, ofs.sc, ofs.sd, p ) >= cval ? 2 : 0); // 6
mask |= (CALC_SUM_OFS_( ofs.s4, ofs.s5, ofs.s8, ofs.s9, p ) >= cval ? 1 : 0); // 7
partsum += (bitset[i*bitsetSize + idx] & (1 << mask)) ? st.z : st.w;
}
}
}
lpartsum[lidx] = partsum;
barrier(CLK_LOCAL_MEM_FENCE);
if( partidx == 0 )
{
float s = lpartsum[nr*nparts];
for( i = 1; i < nparts; i++ )
s += lpartsum[i + nr*nparts];
if( s >= stages[stageIdx].threshold )
{
int count = atomic_inc(lcount);
lbuf[count] = idxval;
}
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if( stageIdx == N_STAGES )
{
int nrects = lcount[0];
if( lidx < nrects )
{
int nfaces = atomic_inc(facepos);
if( nfaces < MAX_FACES )
{
volatile __global int* face = facepos + 1 + nfaces*3;
int val = lbuf[lidx];
face[0] = scaleIdx;
face[1] = ix0 + (val & 255);
face[2] = iy0 + (val >> 8);
}
}
}
}
}
}
#endif

View File

@@ -0,0 +1,722 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Wenju He, wenju@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define CELL_WIDTH 8
#define CELL_HEIGHT 8
#define CELLS_PER_BLOCK_X 2
#define CELLS_PER_BLOCK_Y 2
#define NTHREADS 256
#define CV_PI_F M_PI_F
#ifdef INTEL_DEVICE
#define QANGLE_TYPE int
#define QANGLE_TYPE2 int2
#else
#define QANGLE_TYPE uchar
#define QANGLE_TYPE2 uchar2
#endif
//----------------------------------------------------------------------------
// Histogram computation
// 12 threads for a cell, 12x4 threads per block
// Use pre-computed gaussian and interp_weight lookup tables
__kernel void compute_hists_lut_kernel(
const int cblock_stride_x, const int cblock_stride_y,
const int cnbins, const int cblock_hist_size, const int img_block_width,
const int blocks_in_group, const int blocks_total,
const int grad_quadstep, const int qangle_step,
__global const float* grad, __global const QANGLE_TYPE* qangle,
__global const float* gauss_w_lut,
__global float* block_hists, __local float* smem)
{
const int lx = get_local_id(0);
const int lp = lx / 24; /* local group id */
const int gid = get_group_id(0) * blocks_in_group + lp;/* global group id */
const int gidY = gid / img_block_width;
const int gidX = gid - gidY * img_block_width;
const int lidX = lx - lp * 24;
const int lidY = get_local_id(1);
const int cell_x = lidX / 12;
const int cell_y = lidY;
const int cell_thread_x = lidX - cell_x * 12;
__local float* hists = smem + lp * cnbins * (CELLS_PER_BLOCK_X *
CELLS_PER_BLOCK_Y * 12 + CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y);
__local float* final_hist = hists + cnbins *
(CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y * 12);
const int offset_x = gidX * cblock_stride_x + (cell_x << 2) + cell_thread_x;
const int offset_y = gidY * cblock_stride_y + (cell_y << 2);
__global const float* grad_ptr = (gid < blocks_total) ?
grad + offset_y * grad_quadstep + (offset_x << 1) : grad;
__global const QANGLE_TYPE* qangle_ptr = (gid < blocks_total) ?
qangle + offset_y * qangle_step + (offset_x << 1) : qangle;
__local float* hist = hists + 12 * (cell_y * CELLS_PER_BLOCK_Y + cell_x) +
cell_thread_x;
for (int bin_id = 0; bin_id < cnbins; ++bin_id)
hist[bin_id * 48] = 0.f;
const int dist_x = -4 + cell_thread_x - 4 * cell_x;
const int dist_center_x = dist_x - 4 * (1 - 2 * cell_x);
const int dist_y_begin = -4 - 4 * lidY;
for (int dist_y = dist_y_begin; dist_y < dist_y_begin + 12; ++dist_y)
{
float2 vote = (float2) (grad_ptr[0], grad_ptr[1]);
QANGLE_TYPE2 bin = (QANGLE_TYPE2) (qangle_ptr[0], qangle_ptr[1]);
grad_ptr += grad_quadstep;
qangle_ptr += qangle_step;
int dist_center_y = dist_y - 4 * (1 - 2 * cell_y);
int idx = (dist_center_y + 8) * 16 + (dist_center_x + 8);
float gaussian = gauss_w_lut[idx];
idx = (dist_y + 8) * 16 + (dist_x + 8);
float interp_weight = gauss_w_lut[256+idx];
hist[bin.x * 48] += gaussian * interp_weight * vote.x;
hist[bin.y * 48] += gaussian * interp_weight * vote.y;
}
barrier(CLK_LOCAL_MEM_FENCE);
volatile __local float* hist_ = hist;
for (int bin_id = 0; bin_id < cnbins; ++bin_id, hist_ += 48)
{
if (cell_thread_x < 6)
hist_[0] += hist_[6];
barrier(CLK_LOCAL_MEM_FENCE);
if (cell_thread_x < 3)
hist_[0] += hist_[3];
#ifdef CPU
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (cell_thread_x == 0)
final_hist[(cell_x * 2 + cell_y) * cnbins + bin_id] =
hist_[0] + hist_[1] + hist_[2];
}
barrier(CLK_LOCAL_MEM_FENCE);
int tid = (cell_y * CELLS_PER_BLOCK_Y + cell_x) * 12 + cell_thread_x;
if ((tid < cblock_hist_size) && (gid < blocks_total))
{
__global float* block_hist = block_hists +
(gidY * img_block_width + gidX) * cblock_hist_size;
block_hist[tid] = final_hist[tid];
}
}
//-------------------------------------------------------------
// Normalization of histograms via L2Hys_norm
// optimized for the case of 9 bins
__kernel void normalize_hists_36_kernel(__global float* block_hists,
const float threshold, __local float *squares)
{
const int tid = get_local_id(0);
const int gid = get_global_id(0);
const int bid = tid / 36; /* block-hist id, (0 - 6) */
const int boffset = bid * 36; /* block-hist offset in the work-group */
const int hid = tid - boffset; /* histogram bin id, (0 - 35) */
float elem = block_hists[gid];
squares[tid] = elem * elem;
barrier(CLK_LOCAL_MEM_FENCE);
__local float* smem = squares + boffset;
float sum = smem[hid];
if (hid < 18)
smem[hid] = sum = sum + smem[hid + 18];
barrier(CLK_LOCAL_MEM_FENCE);
if (hid < 9)
smem[hid] = sum = sum + smem[hid + 9];
barrier(CLK_LOCAL_MEM_FENCE);
if (hid < 4)
smem[hid] = sum + smem[hid + 4];
barrier(CLK_LOCAL_MEM_FENCE);
sum = smem[0] + smem[1] + smem[2] + smem[3] + smem[8];
elem = elem / (sqrt(sum) + 3.6f);
elem = min(elem, threshold);
barrier(CLK_LOCAL_MEM_FENCE);
squares[tid] = elem * elem;
barrier(CLK_LOCAL_MEM_FENCE);
sum = smem[hid];
if (hid < 18)
smem[hid] = sum = sum + smem[hid + 18];
barrier(CLK_LOCAL_MEM_FENCE);
if (hid < 9)
smem[hid] = sum = sum + smem[hid + 9];
barrier(CLK_LOCAL_MEM_FENCE);
if (hid < 4)
smem[hid] = sum + smem[hid + 4];
barrier(CLK_LOCAL_MEM_FENCE);
sum = smem[0] + smem[1] + smem[2] + smem[3] + smem[8];
block_hists[gid] = elem / (sqrt(sum) + 1e-3f);
}
//-------------------------------------------------------------
// Normalization of histograms via L2Hys_norm
//
inline float reduce_smem(volatile __local float* smem, int size)
{
unsigned int tid = get_local_id(0);
float sum = smem[tid];
if (size >= 512) { if (tid < 256) smem[tid] = sum = sum + smem[tid + 256];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 256) { if (tid < 128) smem[tid] = sum = sum + smem[tid + 128];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 128) { if (tid < 64) smem[tid] = sum = sum + smem[tid + 64];
barrier(CLK_LOCAL_MEM_FENCE); }
#ifdef CPU
if (size >= 64) { if (tid < 32) smem[tid] = sum = sum + smem[tid + 32];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 32) { if (tid < 16) smem[tid] = sum = sum + smem[tid + 16];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 16) { if (tid < 8) smem[tid] = sum = sum + smem[tid + 8];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 8) { if (tid < 4) smem[tid] = sum = sum + smem[tid + 4];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 4) { if (tid < 2) smem[tid] = sum = sum + smem[tid + 2];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 2) { if (tid < 1) smem[tid] = sum = sum + smem[tid + 1];
barrier(CLK_LOCAL_MEM_FENCE); }
#else
if (tid < 32)
{
if (size >= 64) smem[tid] = sum = sum + smem[tid + 32];
#if WAVE_SIZE < 32
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16) {
#endif
if (size >= 32) smem[tid] = sum = sum + smem[tid + 16];
if (size >= 16) smem[tid] = sum = sum + smem[tid + 8];
if (size >= 8) smem[tid] = sum = sum + smem[tid + 4];
if (size >= 4) smem[tid] = sum = sum + smem[tid + 2];
if (size >= 2) smem[tid] = sum = sum + smem[tid + 1];
}
#endif
return sum;
}
__kernel void normalize_hists_kernel(
const int nthreads, const int block_hist_size, const int img_block_width,
__global float* block_hists, const float threshold, __local float *squares)
{
const int tid = get_local_id(0);
const int gidX = get_group_id(0);
const int gidY = get_group_id(1);
__global float* hist = block_hists + (gidY * img_block_width + gidX) *
block_hist_size + tid;
float elem = 0.f;
if (tid < block_hist_size)
elem = hist[0];
squares[tid] = elem * elem;
barrier(CLK_LOCAL_MEM_FENCE);
float sum = reduce_smem(squares, nthreads);
float scale = 1.0f / (sqrt(sum) + 0.1f * block_hist_size);
elem = min(elem * scale, threshold);
barrier(CLK_LOCAL_MEM_FENCE);
squares[tid] = elem * elem;
barrier(CLK_LOCAL_MEM_FENCE);
sum = reduce_smem(squares, nthreads);
scale = 1.0f / (sqrt(sum) + 1e-3f);
if (tid < block_hist_size)
hist[0] = elem * scale;
}
//---------------------------------------------------------------------
// Linear SVM based classification
// 48x96 window, 9 bins and default parameters
// 180 threads, each thread corresponds to a bin in a row
__kernel void classify_hists_180_kernel(
const int cdescr_width, const int cdescr_height, const int cblock_hist_size,
const int img_win_width, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
__global const float * block_hists, __global const float* coefs,
float free_coef, float threshold, __global uchar* labels)
{
const int tid = get_local_id(0);
const int gidX = get_group_id(0);
const int gidY = get_group_id(1);
__global const float* hist = block_hists + (gidY * win_block_stride_y *
img_block_width + gidX * win_block_stride_x) * cblock_hist_size;
float product = 0.f;
for (int i = 0; i < cdescr_height; i++)
{
product += coefs[i * cdescr_width + tid] *
hist[i * img_block_width * cblock_hist_size + tid];
}
__local float products[180];
products[tid] = product;
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 90) products[tid] = product = product + products[tid + 90];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 45) products[tid] = product = product + products[tid + 45];
barrier(CLK_LOCAL_MEM_FENCE);
volatile __local float* smem = products;
#ifdef CPU
if (tid < 13) smem[tid] = product = product + smem[tid + 32];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16) smem[tid] = product = product + smem[tid + 16];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<8) smem[tid] = product = product + smem[tid + 8];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<4) smem[tid] = product = product + smem[tid + 4];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<2) smem[tid] = product = product + smem[tid + 2];
barrier(CLK_LOCAL_MEM_FENCE);
#else
if (tid < 13)
{
smem[tid] = product = product + smem[tid + 32];
}
#if WAVE_SIZE < 32
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 16)
{
smem[tid] = product = product + smem[tid + 16];
smem[tid] = product = product + smem[tid + 8];
smem[tid] = product = product + smem[tid + 4];
smem[tid] = product = product + smem[tid + 2];
}
#endif
if (tid == 0){
product = product + smem[tid + 1];
labels[gidY * img_win_width + gidX] = (product + free_coef >= threshold);
}
}
//---------------------------------------------------------------------
// Linear SVM based classification
// 64x128 window, 9 bins and default parameters
// 256 threads, 252 of them are used
__kernel void classify_hists_252_kernel(
const int cdescr_width, const int cdescr_height, const int cblock_hist_size,
const int img_win_width, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
__global const float * block_hists, __global const float* coefs,
float free_coef, float threshold, __global uchar* labels)
{
const int tid = get_local_id(0);
const int gidX = get_group_id(0);
const int gidY = get_group_id(1);
__global const float* hist = block_hists + (gidY * win_block_stride_y *
img_block_width + gidX * win_block_stride_x) * cblock_hist_size;
float product = 0.f;
if (tid < cdescr_width)
{
for (int i = 0; i < cdescr_height; i++)
product += coefs[i * cdescr_width + tid] *
hist[i * img_block_width * cblock_hist_size + tid];
}
__local float products[NTHREADS];
products[tid] = product;
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 128) products[tid] = product = product + products[tid + 128];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 64) products[tid] = product = product + products[tid + 64];
barrier(CLK_LOCAL_MEM_FENCE);
volatile __local float* smem = products;
#ifdef CPU
if(tid<32) smem[tid] = product = product + smem[tid + 32];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<16) smem[tid] = product = product + smem[tid + 16];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<8) smem[tid] = product = product + smem[tid + 8];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<4) smem[tid] = product = product + smem[tid + 4];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<2) smem[tid] = product = product + smem[tid + 2];
barrier(CLK_LOCAL_MEM_FENCE);
#else
if (tid < 32)
{
smem[tid] = product = product + smem[tid + 32];
#if WAVE_SIZE < 32
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16) {
#endif
smem[tid] = product = product + smem[tid + 16];
smem[tid] = product = product + smem[tid + 8];
smem[tid] = product = product + smem[tid + 4];
smem[tid] = product = product + smem[tid + 2];
}
#endif
if (tid == 0){
product = product + smem[tid + 1];
labels[gidY * img_win_width + gidX] = (product + free_coef >= threshold);
}
}
//---------------------------------------------------------------------
// Linear SVM based classification
// 256 threads
__kernel void classify_hists_kernel(
const int cdescr_size, const int cdescr_width, const int cblock_hist_size,
const int img_win_width, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
__global const float * block_hists, __global const float* coefs,
float free_coef, float threshold, __global uchar* labels)
{
const int tid = get_local_id(0);
const int gidX = get_group_id(0);
const int gidY = get_group_id(1);
__global const float* hist = block_hists + (gidY * win_block_stride_y *
img_block_width + gidX * win_block_stride_x) * cblock_hist_size;
float product = 0.f;
for (int i = tid; i < cdescr_size; i += NTHREADS)
{
int offset_y = i / cdescr_width;
int offset_x = i - offset_y * cdescr_width;
product += coefs[i] *
hist[offset_y * img_block_width * cblock_hist_size + offset_x];
}
__local float products[NTHREADS];
products[tid] = product;
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 128) products[tid] = product = product + products[tid + 128];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 64) products[tid] = product = product + products[tid + 64];
barrier(CLK_LOCAL_MEM_FENCE);
volatile __local float* smem = products;
#ifdef CPU
if(tid<32) smem[tid] = product = product + smem[tid + 32];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<16) smem[tid] = product = product + smem[tid + 16];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<8) smem[tid] = product = product + smem[tid + 8];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<4) smem[tid] = product = product + smem[tid + 4];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<2) smem[tid] = product = product + smem[tid + 2];
barrier(CLK_LOCAL_MEM_FENCE);
#else
if (tid < 32)
{
smem[tid] = product = product + smem[tid + 32];
#if WAVE_SIZE < 32
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16) {
#endif
smem[tid] = product = product + smem[tid + 16];
smem[tid] = product = product + smem[tid + 8];
smem[tid] = product = product + smem[tid + 4];
smem[tid] = product = product + smem[tid + 2];
}
#endif
if (tid == 0){
smem[tid] = product = product + smem[tid + 1];
labels[gidY * img_win_width + gidX] = (product + free_coef >= threshold);
}
}
//----------------------------------------------------------------------------
// Extract descriptors
__kernel void extract_descrs_by_rows_kernel(
const int cblock_hist_size, const int descriptors_quadstep,
const int cdescr_size, const int cdescr_width, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
__global const float* block_hists, __global float* descriptors)
{
int tid = get_local_id(0);
int gidX = get_group_id(0);
int gidY = get_group_id(1);
// Get left top corner of the window in src
__global const float* hist = block_hists + (gidY * win_block_stride_y *
img_block_width + gidX * win_block_stride_x) * cblock_hist_size;
// Get left top corner of the window in dst
__global float* descriptor = descriptors +
(gidY * get_num_groups(0) + gidX) * descriptors_quadstep;
// Copy elements from src to dst
for (int i = tid; i < cdescr_size; i += NTHREADS)
{
int offset_y = i / cdescr_width;
int offset_x = i - offset_y * cdescr_width;
descriptor[i] = hist[offset_y * img_block_width * cblock_hist_size + offset_x];
}
}
__kernel void extract_descrs_by_cols_kernel(
const int cblock_hist_size, const int descriptors_quadstep, const int cdescr_size,
const int cnblocks_win_x, const int cnblocks_win_y, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
__global const float* block_hists, __global float* descriptors)
{
int tid = get_local_id(0);
int gidX = get_group_id(0);
int gidY = get_group_id(1);
// Get left top corner of the window in src
__global const float* hist = block_hists + (gidY * win_block_stride_y *
img_block_width + gidX * win_block_stride_x) * cblock_hist_size;
// Get left top corner of the window in dst
__global float* descriptor = descriptors +
(gidY * get_num_groups(0) + gidX) * descriptors_quadstep;
// Copy elements from src to dst
for (int i = tid; i < cdescr_size; i += NTHREADS)
{
int block_idx = i / cblock_hist_size;
int idx_in_block = i - block_idx * cblock_hist_size;
int y = block_idx / cnblocks_win_x;
int x = block_idx - y * cnblocks_win_x;
descriptor[(x * cnblocks_win_y + y) * cblock_hist_size + idx_in_block] =
hist[(y * img_block_width + x) * cblock_hist_size + idx_in_block];
}
}
//----------------------------------------------------------------------------
// Gradients computation
__kernel void compute_gradients_8UC4_kernel(
const int height, const int width,
const int img_step, const int grad_quadstep, const int qangle_step,
const __global uchar4 * img, __global float * grad, __global QANGLE_TYPE * qangle,
const float angle_scale, const char correct_gamma, const int cnbins)
{
const int x = get_global_id(0);
const int tid = get_local_id(0);
const int gSizeX = get_local_size(0);
const int gidY = get_group_id(1);
__global const uchar4* row = img + gidY * img_step;
__local float sh_row[(NTHREADS + 2) * 3];
uchar4 val;
if (x < width)
val = row[x];
else
val = row[width - 2];
sh_row[tid + 1] = val.x;
sh_row[tid + 1 + (NTHREADS + 2)] = val.y;
sh_row[tid + 1 + 2 * (NTHREADS + 2)] = val.z;
if (tid == 0)
{
val = row[max(x - 1, 1)];
sh_row[0] = val.x;
sh_row[(NTHREADS + 2)] = val.y;
sh_row[2 * (NTHREADS + 2)] = val.z;
}
if (tid == gSizeX - 1)
{
val = row[min(x + 1, width - 2)];
sh_row[gSizeX + 1] = val.x;
sh_row[gSizeX + 1 + (NTHREADS + 2)] = val.y;
sh_row[gSizeX + 1 + 2 * (NTHREADS + 2)] = val.z;
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < width)
{
float4 a = (float4) (sh_row[tid], sh_row[tid + (NTHREADS + 2)],
sh_row[tid + 2 * (NTHREADS + 2)], 0);
float4 b = (float4) (sh_row[tid + 2], sh_row[tid + 2 + (NTHREADS + 2)],
sh_row[tid + 2 + 2 * (NTHREADS + 2)], 0);
float4 dx;
if (correct_gamma == 1)
dx = sqrt(b) - sqrt(a);
else
dx = b - a;
float4 dy = (float4) 0.f;
if (gidY > 0 && gidY < height - 1)
{
a = convert_float4(img[(gidY - 1) * img_step + x].xyzw);
b = convert_float4(img[(gidY + 1) * img_step + x].xyzw);
if (correct_gamma == 1)
dy = sqrt(b) - sqrt(a);
else
dy = b - a;
}
float4 mag = hypot(dx, dy);
float best_dx = dx.x;
float best_dy = dy.x;
float mag0 = mag.x;
if (mag0 < mag.y)
{
best_dx = dx.y;
best_dy = dy.y;
mag0 = mag.y;
}
if (mag0 < mag.z)
{
best_dx = dx.z;
best_dy = dy.z;
mag0 = mag.z;
}
float ang = (atan2(best_dy, best_dx) + CV_PI_F) * angle_scale - 0.5f;
int hidx = (int)floor(ang);
ang -= hidx;
hidx = (hidx + cnbins) % cnbins;
qangle[(gidY * qangle_step + x) << 1] = hidx;
qangle[((gidY * qangle_step + x) << 1) + 1] = (hidx + 1) % cnbins;
grad[(gidY * grad_quadstep + x) << 1] = mag0 * (1.f - ang);
grad[((gidY * grad_quadstep + x) << 1) + 1] = mag0 * ang;
}
}
__kernel void compute_gradients_8UC1_kernel(
const int height, const int width,
const int img_step, const int grad_quadstep, const int qangle_step,
__global const uchar * img, __global float * grad, __global QANGLE_TYPE * qangle,
const float angle_scale, const char correct_gamma, const int cnbins)
{
const int x = get_global_id(0);
const int tid = get_local_id(0);
const int gSizeX = get_local_size(0);
const int gidY = get_group_id(1);
__global const uchar* row = img + gidY * img_step;
__local float sh_row[NTHREADS + 2];
if (x < width)
sh_row[tid + 1] = row[x];
else
sh_row[tid + 1] = row[width - 2];
if (tid == 0)
sh_row[0] = row[max(x - 1, 1)];
if (tid == gSizeX - 1)
sh_row[gSizeX + 1] = row[min(x + 1, width - 2)];
barrier(CLK_LOCAL_MEM_FENCE);
if (x < width)
{
float dx;
if (correct_gamma == 1)
dx = sqrt(sh_row[tid + 2]) - sqrt(sh_row[tid]);
else
dx = sh_row[tid + 2] - sh_row[tid];
float dy = 0.f;
if (gidY > 0 && gidY < height - 1)
{
float a = (float) img[ (gidY + 1) * img_step + x ];
float b = (float) img[ (gidY - 1) * img_step + x ];
if (correct_gamma == 1)
dy = sqrt(a) - sqrt(b);
else
dy = a - b;
}
float mag = hypot(dx, dy);
float ang = (atan2(dy, dx) + CV_PI_F) * angle_scale - 0.5f;
int hidx = (int)floor(ang);
ang -= hidx;
hidx = (hidx + cnbins) % cnbins;
qangle[ (gidY * qangle_step + x) << 1 ] = hidx;
qangle[ ((gidY * qangle_step + x) << 1) + 1 ] = (hidx + 1) % cnbins;
grad[ (gidY * grad_quadstep + x) << 1 ] = mag * (1.f - ang);
grad[ ((gidY * grad_quadstep + x) << 1) + 1 ] = mag * ang;
}
}

View File

@@ -0,0 +1,53 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#include "opencv2/objdetect.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/core/private.hpp"
#endif

File diff suppressed because it is too large Load Diff