mirror of
https://github.com/Zippland/Bubbles.git
synced 2026-02-15 16:25:59 +08:00
重构了一下
This commit is contained in:
@@ -49,10 +49,12 @@ class FunctionCallLLM:
|
||||
self.logger.error("无可用的AI模型")
|
||||
return LLMRunResult(handled=False, error="no_model")
|
||||
|
||||
if not hasattr(chat_model, "call_with_functions"):
|
||||
self.logger.error("当前模型不支持函数调用接口,请配置支持 function calling 的模型")
|
||||
return LLMRunResult(handled=False, error="no_function_call_support")
|
||||
|
||||
try:
|
||||
if hasattr(chat_model, "call_with_functions"):
|
||||
return self._run_native_loop(ctx, chat_model, functions, executor, formatter)
|
||||
return self._run_prompt_loop(ctx, chat_model, functions, executor)
|
||||
return self._run_native_loop(ctx, chat_model, functions, executor, formatter)
|
||||
except Exception as exc: # pragma: no cover - safeguard
|
||||
self.logger.error(f"LLM 调用失败: {exc}")
|
||||
return LLMRunResult(handled=False, error=str(exc))
|
||||
@@ -133,62 +135,6 @@ class FunctionCallLLM:
|
||||
self.logger.warning("达到最大函数调用轮数,未得到最终回答")
|
||||
return LLMRunResult(handled=False, error="max_rounds")
|
||||
|
||||
# ---------------------------------------------------------------------
|
||||
# Prompt-based fallback workflow
|
||||
# ---------------------------------------------------------------------
|
||||
|
||||
def _run_prompt_loop(
|
||||
self,
|
||||
ctx: MessageContext,
|
||||
chat_model: Any,
|
||||
functions: Dict[str, FunctionSpec],
|
||||
executor: Callable[[FunctionSpec, Dict[str, Any]], FunctionResult],
|
||||
) -> LLMRunResult:
|
||||
system_prompt = self._build_prompt_system_text(functions)
|
||||
user_input = f"用户输入:{ctx.text}"
|
||||
|
||||
ai_response = chat_model.get_answer(
|
||||
user_input,
|
||||
wxid=ctx.get_receiver(),
|
||||
system_prompt_override=system_prompt,
|
||||
)
|
||||
|
||||
json_match = re.search(r"\{.*\}", ai_response, re.DOTALL)
|
||||
if not json_match:
|
||||
self.logger.warning(f"提示词模式下无法解析JSON: {ai_response}")
|
||||
return LLMRunResult(handled=False)
|
||||
|
||||
try:
|
||||
decision = json.loads(json_match.group(0))
|
||||
except json.JSONDecodeError as exc:
|
||||
self.logger.error(f"提示词模式 JSON 解析失败: {exc}")
|
||||
return LLMRunResult(handled=False)
|
||||
|
||||
action_type = decision.get("action_type")
|
||||
if action_type == "chat":
|
||||
# 提示词模式下无法获得模型最终回答,交给上层兜底
|
||||
return LLMRunResult(handled=False)
|
||||
|
||||
if action_type != "function":
|
||||
self.logger.warning(f"未知的action_type: {action_type}")
|
||||
return LLMRunResult(handled=False)
|
||||
|
||||
function_name = decision.get("function_name")
|
||||
if function_name not in functions:
|
||||
self.logger.warning(f"未知的功能名 - {function_name}")
|
||||
return LLMRunResult(handled=False)
|
||||
|
||||
arguments = decision.get("arguments", {})
|
||||
result = executor(functions[function_name], arguments)
|
||||
if not result.handled:
|
||||
return LLMRunResult(handled=False)
|
||||
|
||||
return LLMRunResult(handled=True, final_response="\n".join(result.messages))
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Helpers
|
||||
# ------------------------------------------------------------------
|
||||
|
||||
@staticmethod
|
||||
def _convert_assistant_message(message: Any) -> Dict[str, Any]:
|
||||
entry: Dict[str, Any] = {
|
||||
@@ -224,16 +170,6 @@ class FunctionCallLLM:
|
||||
)
|
||||
return openai_functions
|
||||
|
||||
@staticmethod
|
||||
def _build_prompt_system_text(functions: Dict[str, FunctionSpec]) -> str:
|
||||
prompt = """你是一个智能路由助手。根据用户输入判断是否需要调用以下函数之一。"""
|
||||
for spec in functions.values():
|
||||
prompt += f"\n- {spec.name}: {spec.description}"
|
||||
prompt += """
|
||||
请严格输出JSON:{"action_type": "chat"} 或 {"action_type": "function", "function_name": "...", "arguments": {...}}
|
||||
"""
|
||||
return prompt
|
||||
|
||||
def validate_arguments(self, arguments: Dict[str, Any], schema: Dict[str, Any]) -> bool:
|
||||
try:
|
||||
required_fields = schema.get("required", [])
|
||||
|
||||
Reference in New Issue
Block a user